Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Lithium-induced modiphication of the physicochemical state of membrane proteins and lipids in human erythrocytes

https://doi.org/10.29235/1029-8940-2021-66-3-295-301

Abstract

The effect of various concentrations of lithium sulfate on human erythrocytes in vitro has been studied. It has been shown that the effect of lithium salt in maximum pharmacological and toxic concentrations on cells leads to a modification of the physicochemical state of membrane-bound proteins and lipids. It was found that in human erythrocytes exposed to lithium ions, there is a decrease in the activity of membrane-bound acetylcholinesterase and methgemoglobin reductase, as well as a change in the microviscosity of the lipid bilayer of membranes. The results obtained can be used to create a cell test system for assessing the toxicity of lithium compounds.

About the Authors

G. P. Zubritskaya
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus

Galina P. Zubritskaya - Ph. D. (Biol.), Leading Researcher, Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus.

27, Akademicheskaya Str., 220072, Minsk.



E. I. Slobozhanina
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus

Ekaterina I. Slobozhanina - Corresponding Member, D. Sc. (Biol.), Professor, Head of the Laboratory, Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus.

27, Akademicheskaya Str., 220072, Minsk.



References

1. 1 Kielczykowska M., Kocot J., Kurzepa J., Lewandowska A., Zelazowska R., Musik I. Could selenium administration alleviate the disturbances of blood parameters caused by lithium administration in rats? Biological Trace Element Research, 2014, vol. 158, no. 3, pp. 359-364. https://doi.org/10.1007/s12011-014-9952-4

2. Bekker R. A., Bykov Yu. V. Lithium preparations in psychiatty, addiction medicine and neurology. Part II. Biochemical mechanisms of its action. Acta Biomedical Scientifica, 2019, vol. 4, no. 2, pp. 82-102. https://doi.org/10.29413/ABS.2019-4.2.13

3. Slobozhanina E. I., Klimkovich N. N., Zubritskaya G. P., Kozarezova T. I. Disorder of erythropoiesis and changes in the physicochemical properties of erythrocyte membranes in patients with myelodysplastic syndromes. Morfologicheskie osnovy patologii [Morphological foundations of pathology] . Novosibirsk, 2015, pp. 136-157 (in Russian).

4. Dodge G. T., Mitchell C., Hanahan D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Archivas of Biochemistry and Biophysics, 1963, vol. 100, no. 1, pp. 119-130. https://doi.org/10.1016/0003-9861(63)90042-0

5. Vlachos D. G., Schulpis K. H., Antsaklis A., Mesogitis S., Biliatis I., Tsakiris S. Erythrocyte membrane AchE, Na, K-ATPase and Mg-ATPase activities in mothers and their premature neonates in relation to the mode of delivery. Scandinavian Journal of Clinical Laboratory Investigation, 2010, vol. 70, no. 8, pp. 568-574. https://doi.org/10.3109/00365513.2010.527365

6. Papandreou P., Rakitzis E. T. Determination of NADH2-ferricyanide oxidoreductase (cytochrome b5 reductase, diaphorase) activity of human erythrocytes by an analysis of the time-dependence of NADH2 oxidation. Clinica Chimica Acta, 1989, vol. 181, no. 2, pp. 189-196. https://doi.org/10.1016/0009-8981(89)90187-32

7. Kuhry J. G., Duportail G., Bronner C., Laustriat G. Plasma membrane fluidity measurements on whole living cells by fluorescence anisotropy of trimethylammoniumdiphenylhexatriene. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1985, vol. 845, no. 1, pp. 60-67. https://doi.org/10.1016/0167-4889(85)90055-2

8. Harris F. M., Best K. B., Bell J. D. Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2002, vol. 1565, no. 1, pp. 123-128. https://doi.org/10.1016/s0005-2736(02)00514-x

9. Torshin I. Yu., Sardaryan I. S., Gromova O. A., Rastashanskii V. A., Fedotova L. E. Chemoreactomic modeling of lithium ascorbate. Farmakokinetika i farmakodinamika [Pharmacokinetics and pharmacodynamics], 2016, vol. 3, pp. 47-58 (in Russian).

10. McNamara R. K., Jandacek R., Tso P., Blom T. J., Welge J. A., Strawn J. R., Adler C. M., DelBello M. P., Strakowski S. M. First-episode bipolar disorder is associated with erythrocyte membrane docosahexaenoic acid deficits: dissociation from clinical response to lithium or quetiapine. Psychiatry Research, 2015, vol. 230, no. 2, pp. 447-453. https://doi.org/10.1016/j.psychres.2015.09.035

11. Pronin A. V., Gromova O. A., Sardaryan I. S., Torshin I. Yu., Stel'mashuk E. V., Ostrenko K. S., Aleksandrova O. P., Genrikhs E. E., Khaspekov L. G. Adaptogenic and neuroprotective properties of lithium ascorbate. Zhurnal nevrologii i psikhiatrii imeni C. C. Korsakova [Journal of neurology and psychiatry named after S. S. Korsakov], 2016, vol. 116, no. 12, pp. 86-91. https://doi.org/10.17116/jnevro201611612186-91 (in Russian).

12. Can A., Piantadosi S. C., Gould T. D. Differential antidepressant-like response to lithium treatment bet-ween mouse strains: Effects of sex, maternal care, and mixed genetic background. Psychopharmacology, 2013, vol. 228, no. 3, pp. 411-418. https://doi.org/10.1007/s00213-013-3045-5

13. Hillert M. H., Imran I., Zimmermann M., Lau H., Weinfurter S., Klein J. Dynamics of hippocampal acetylcholine release during lithium-pilocarpine-induced status epilepticus in rats. Journal of Neurochemistry, 2014, vol. 131, no. 1, pp. 42-52. https://doi.org/10.1111/jnc.12787

14. Topunov A. F., Kosmochevskaya O. V. Multiple functional forms of hemoglobin in the human body: modern view and practical use. Biomika [Biomics], 2018, vol. 10, no. 3, pp. 251-267 (in Russian).

15. Denshaw-Burke М., DelGiacco E., Curran A. L., Savior D. C., Kumar M. Methemoglobinemia. Medscape. Available at: https://emedicine.medscape.com/article/204178-overview (accessed 17.12.2020).

16. Gay H. C., Amaral А. P. Acquired methemoglobinemia associated with topical lidocaine administration: a case report. Drug Safety - Case Reports, 2018, vol. 5, no. 1, pp. 15-20. https://doi.org/10.1007/s40800-018-0081-4

17. Mokrushnikov P. V. Technique and results of measuring the microviscosity of biomembranes. Trudy Novosibirskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta (Sibstrin) [Proceedings of the Novosibirsk State University of Architecture and Civil Engineering (Sibistrin)], 2018, vol. 2, no. 1, pp. 17-24 (in Russian).

18. Li H., Lykotrafitis G. Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network. Biophysical Journal, 2014, vol. 107, no. 3, pp. 642-653. https://doi.org/10.1016/j.bpj.2014.06.031

19. Ballweg S., Ernst R. Control of membrane fluidity: the OLE pathway in focus. Journal of Biological Chemistry, 2017, vol. 398, no. 2. pp. 215-228. https://doi.org/10.1515/hsz-2016-0277

20. Bagatolli L. Laurdan fluorescence properties in membranes:a journey from the fluorometer to the microscope. Fluorescent Methods to Study Biological Membranes. Heidelberg, 2012, pp. 3-35.

21. Ruiz P. Kaplan and Sadock's. Comprehensive Textbook of Psychiatry. Cambridge, Cambridge University Press, 2017. 418 p.


Review

Views: 602


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)