Biosynthesis of Escherichia coli adenosine deaminase using cell-free protein synthesis
https://doi.org/10.29235/1029-8940-2021-66-3-271-276
Abstract
One of the recent perspective trends of molecular biotechnology is cell-free protein synthesis (CFPS). The procedure of CFPS is based on in vitro reconstruction of all stages of a biosynthesis of protein in a whole cell, including a transcription, an aminoacylation of tRNA and translation of mRNA by ribosomes.
Previously, we constructed a strain Escherichia coli that produces homologous adenosine deaminase (ADase). In the present study, as an alternative to canonical submerged cultivation in a fermenter, the possibility of the ADase synthesis in the system of CFPS was studied. For synthesis of this enzyme we used the E. coli-30 cell extract, T7 bacteriophage RNA polymerase, and high-copy plasmid vector pET42mut with gene ADase inserted into it.
As a result of the work we have demonstrated for the first time the possibility of synthesis of ADase E. coli in the CFPS system. In a partially optimized process conditions, an experimental sample of recombinant AD with an activity of 530 U/ml of enzyme preparation was obtained.
Keywords
About the Authors
I. S. KazlouskiBelarus
Illia S. Kazlouski - Master of Biology, Researcher, Institute of Microbiology of the National Academy of Sciences of Belarus.
2, Kuprevich Str., 220141, Minsk.
A. I. Zinchenko
Belarus
Anatoli I. Zinchenko - Corresponding Member, D. Sc. (Biol.), Professor, Head of the Laboratory, Institute of Microbiology of the National Academy of Sciences of Belarus.
2, Kuprevich Str., 220141, Minsk.
References
1. Smith M. T., Varner C. T., Bush D. B., Bundy B. C. The incorporation of the A2 protein to produce novel Qe virus-like particles using cell-free protein synthesis. Biotechnology Progress, 2012, vol. 28, no. 2, pp. 549-555. https://doi.org/10.1002/btpr.744
2. El-Baky N., Elkhawaga M., Abdelkhalek E., Sharaf M. M., Redwan E. M., Kholef H. R. De novo expression and antibacterial potential of four lactoferricin peptides in cell-free protein synthesis system. Biotechnology Reports, 2020, vol. 29, art. e00590. https://doi.org/10.1016/j.btre.2020.e00583
3. Hovijitra N. T., Wuu J. J., Peaker B., Swartz J. R. Cell-free synthesis of functional aquaporin Z in synthetic liposomes. Biotechnology and Bioengineering, 2009, vol. 104, no. 1, pp. 40-49. https://doi.org/10.1002/bit.22385
4. Patel K. G., Swartz J. R. Surface functionalization of virus-like particles by direct conjugation using azide-alkyne click chemistry. Bioconjugate Chemistry, 2011, vol. 22, no. 3, pp. 376-387. https://doi.org/10.1021/bc100367u
5. Imbert L., Lenoir-Capello R., Crublet E., Vallet A., Awad R., Ayala I. [et al.]. In vitro production of perdeuterated proteins in H2O for biomolecular NRM studies. Methods in Molecular Biology, 2021, vol. 2199, pp. 127-149. https://doi.org/10.1007/9728-1-0716-0892-0_8
6. Georgi V., Georgi L., Blechert M., Bergmeister M., Zwanzig M., Wustenhagen D. A., Bier F. F., Junga E., Kubick S. On-chip automation of cell-free protein synthesis: new opportunities due to a novel reaction mode. Lab on a Chip, 2016, vol. 16, no. 2, pp. 269-281. https://doi.org/10.1039/C5LC00700C
7. Ayoubi-Joshaghani M. H., Dianat-Moghadam H., Seidi K., Jahanban-Esfahalan A., Zare P., Jahanban-Esfahlan R. Cell-free protein synthesis: The transition from batch reactions to minimal cells and microfluidic devices. Biotechnology and Bioengineering, 2020, vol. 117, no. 4, pp. 1204-1229. https://doi.org/10.1002/bit.27248
8. Zubay G. In vitro synthesis of protein in microbial systems. Annual Review of Genetics, 1973, vol. 7, pp. 267-287. https://doi.org/10.1146/annurev.ge.07.120173.001411
9. Lu Y., Chan W., Ko B., VanLang C., Swartz J. R. Assessing sequence plasticity of a virus-like nanoparticle by evolution toward a versatile scaffold for vaccines and drug delivery. Proceedings of the National Academy of Sciences of the United States of America, 2015, vol. 112, no. 40, pp. 12360-12365. https://doi.org/10.1073/pnas.1510533112
10. Xu Y., Lee J., Tran C., Heibeck T., Wang W., Yang J. [et al.]. Production of bispecific antibodies in “knobs-into holes” using a cell-free expression system. mAbs, 2015, vol. 7, no. 1, pp. 231-242. https://doi.org/10.4161/19420862.2015.989013
11. Zawada J. F., Yin G., Steiner A. R., Yang J., Naresh A., Roy S. M., Gold D. S., Heinsohn H. G., Murray C. J. Microscale to manufacturing scale-up of cell-free cytokine production a new approach for shortening protein production development timelines. Biotechnology and Bioengineering, 2011, vol. 108, no. 7, pp. 1570-1578. https://doi.org/10.1002/bit.23103
12. Guo W., Sheng J., Feng X. Mini-review: in vitro metabolic engineering for biomanufacturing of high-value products. Computational and Structural Biotechnology Journal, 2017, vol. 15, pp. 161-167. https://doi.org/10.1016/j.csbj.2017.01.006
13. Salehi A. S., Shakalli Tang M. J., Smith M. T., Hunt J. M., Law R. A., Wood D. W., Bundy B. C. A cell-free protein synthesis approach to biosensing hTRe-specific endocrine disruptors. Analytical Chemistry, 2017, vol. 89, no. 6, pp. 33953401. https://doi.org/10.1021/acs.analchem.6b04034
14. Pardee K., Green A., Ferrante T., Cameron D. E., DaleyKeyser A., Yin P., Collins J. J. Paper-based synthetic gene networks. Cell, 2014, vol. 159, no. 4, pp. 940-954. https://doi.org/10.1016/j.cell.2014.10.004
15. Tonooka T. Microfluidic device with integrated freeze-dried cell-free protein synthesis system for small-volume biosensing. Micromachines, 2020, vol. 12, pp. 27-37. https://doi.org/10.3390/mi12010027
16. Okuyama K., Shibuya S., Hamamoto T., Noguchi T. Enzymatic synthesis of 2'-deoxyguanosine with nucleoside deoxyri-bosyltransferase-II. Bioscience, Biotechnology, and Biochemistry, 2003, vol. 67, no. 5, pp. 989-995. https://doi.org/10.1271/bbb.67.989
17. Kazlovskii I. S., Rymko A. N., Zinchenko A. I. Modification of expression system of pET for using in cell-free protein synthesis. Mikrobnye biotekhnologii: fundamental'nye i prikladnye aspekty: sbornik nauchnykh trudov. Tom 10 [Microbial biotechnology: fundamental and applied aspects: a collection of scientific papers. Vol. 10]. Minsk, 2018, pp. 69-78 (in Russian).
18. Korovashkina A. S., Kvach S. V., Eroshevskaya L. A., Zinchenko A. I. Production of thermostable DNA polymerase suitable for whole-blood polymerase chain reaction. Biochemistry and Biotechnology: Research and Development. New York, 2012, pp. 1-6.
19. You C., Zhang X. Z., Zhang Y. H. P. Simple cloning via direct transformation of PCR product (DNA multimer) to Escherichia coli and Bacillus subtilis. Applied and Environmental Microbiology, 2012, vol. 78, no. 5, pp. 1593-1595. https://doi.org/10.1128/AEM.07105-11
20. Kvach S. V., Eroshevskaya L. A., Zinchenko A. I. Optimization of expression conditions of the strain-superproducent adenosine deaminase Escherichia coli. Dinamika issledovanii - 2008: materialy IV Mezhdunarodnoi nauchno-prakticheskoi konferentsii (Sofiya, 16-31 iyulya 2008 goda) [Dynamics of research - 2008: Proceedings of the IV International scientific and practical conference (Sofia, July 16-31, 2008)]. Sofia, 2008, pp. 26-29 (in Russian).