Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

The identification and molecular characteristics of Belarusian apple proliferation phytoplasma isolates

https://doi.org/10.29235/1029-8940-2021-66-1-88-97

Abstract

It is known that optimal source of samples for diagnostic of apple proliferation phytoplasma in autumn is roots. In case of the occurrence of pronounced characteristic symptoms - “witches’ broom”, can be used symptomatic shoots.

Real-time PCR with primer pair Phyto-F/Phyto-R and probe Phyto-P and nested PCR with primer pair P1/Tint and fO1/ rO1 can be used to detect Candidatus Phytoplasma mali with a high degree of sensitivity and reproducibility.

Comparison of the nucleotide sequences of Belarusian isolates with the sequences presented in EMBL/GenBank showed that all Belarusian phytoplasma isolates detected on apple cultivars Alesya, Syabryna, Pamyat Sikory belong to species Candidatus Phytoplasma mali. The nucleotide sequences are placed in international database (EMBL/GenBank) with identification numbers (LR701160, LR701188, LR701436, LR701155, LR701438, LR701439, LR701440). The identity of the nucleotide sequences of region of 16S rRNA gene of Belarusian samples of Ca. P. mali ranged from 99.7 to 100.0 %, and hflB gene region ranged from 99.6 to 100.0 %.

About the Authors

T. N. Bazhydai
Institute for Fruit Growing
Belarus

Tatsiana N. Bazhydai - Ph. D. (Biol.), Senior Researcher.

2, Kovalyov Str., 223013, а/с Samokhvalovichy, Minsk Region



E. V. Kolbanova
Institute for Fruit Growing
Belarus

Elena V. Kolbanova - Ph. D. (Biol.), Associate Professor, Head of the Laboratory.

2, Kovalyov Str., 223013, а/с Samokhvalovichy, Minsk Region



N. V. Kukharchyk
Institute for Fruit Growing
Belarus

Natallia V. Kukharchyk - D. Sc. (Agricult.), Professor, Head of the Department.

2, Kovalyov Str., 223013, а/с Samokhvalovichy, Minsk Region



References

1. Seemuller E., Schneider B. ‘Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus Phytoplasma prunorum’, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. International Journal of Systematic and Evolutionary Microbiology, 2004, vol. 54, pp. 1217-1226. https://doi.org/10.1099/ijs.0.02823-0

2. Lee I.-М., Gundersen-Rindal D. E., Davis R. E., Bartoszyk I. M. Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic Bacteriology, 1998, vol. 48, no. 4, pp. 1153-1169. https://doi.org/10.1099/00207713-48-4-1153

3. PM 7/62 (2) ‘Candidatus phytoplasmas mali’, ‘Ca. P. pyri’ and ‘Ca. P. prunorum’. EPPO Bulletin, 2017, vol. 47, no. 2, pp. 146-163. https://doi.org/10.1111/epp.12380

4. Maejima K., Oshima K., Namba Sh. Exploring the phytoplasmas, plant pathogenic bacteria. Journal of General Plant Pathology, 2014, vol. 80, no. 3, pp. 210-221. https://doi.org/10.1007/s10327-014-0512-8

5. Eben A., Gross J. Innovative vector control. New perspectives in phytoplasma disease management. COST action FA0807 Workshop. Barcelona, Spain, 2013, pp. 38-40. Available at: http://costphytoplasma.ipwgnet.org/PDF%20files/BOOK%20COST%20BCN%202013%20080313web.pdf (accessed 02.03.2019).

6. Bertaccini A., Duduk B. Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathologia Mediterranea, 2009, vol. 48, no. 3, pp. 355-378.

7. Marzachi C. Molecular diagnosis of phytoplasmas. Arab Journal of Plant Protection, 2006, vol. 24, no. 2, pp. 139-142.

8. Berges R., Rott M., Seemuller E. Range of phytoplasma concentration in various hosts as determined by competitive polymerase chain reaction. Phytopathology, 2000, vol. 90, pp. 1145-1152. https://doi.org/10.1094/PHYTO.2000.90.10.1145

9. Constable F. E., Gibb K. S., Symons R. H. Seasonal distribution of phytoplasmas in Australian grapevines. Plant Pathology, 2003, vol. 52, no. 3, pp. 267-276. https://doi.org/10.1046/j.1365-3059.2003.00849.x

10. Garcia-Chapa M., Medina V., Viruel M. A., Lavina A. Batlle A. Seasonal detection of pear decline phytoplasma by nested-PCR in different pear cultivars. Plant Pathology, 2003, vol. 52, no. 4, pp. 513-520. https://doi.org/10.1046/j.1365-3059.2003.00868.x

11. Prezelj N., Nikolic P., Gruden K., Ravnikar M., Dermastia M. Spatiotemporal distribution of flavescence doree phytoplasma in grapevine. Plant Pathology, 2012, vol. 62, no. 4, pp. 760-766. https://doi.org/10.1111/j.1365-3059.2012.02693.x

12. Christensen N. M., Nicolaisen M., Hansen M., Schulz A. Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Molecular Plant - Microbe Interactions, 2004, vol. 17, no. 11, pp. 1175-1184. https://doi.org/10.1094/MPMI.2004.17.11.1175

13. Smart C. D., Schneider B., Blomquist C. L., Guerra L. J., Harrison N. A., Ahrens U., Lorenz K. H., Seemuller E., Kirkpatrick B. C. Phytoplasma-specific PCR primers based on sequences of the 16S-23S rRNA spacer region. Applied and Environmental Microbiology, 1996, vol. 62, no. 8, pp. 2988-2993. https://doi.org/10.1128/aem.62.8.2988-2993.1996

14. Lorenz K.-H., Schneider B., Ahrens U., Seemuller E. Detection of the apple proliferation and pear decline phytoplasmas by PCR amplification of ribosomal and non-ribosomal DNA. Phytopathology, 1995, vol. 85, pp. 771-776. https://doi.org/10.1094/Phyto-85-771

15. Deng S., Hiruki C. Amplification of 16S rRNA genes from culturable and nonculturable mollicutes. Journal of Microbiological Methods, 1991, vol. 14, no. 1, pp. 53-61. https://doi.org/10.1016/0167-7012(91)90007-D

16. Razin S., Tully J. G. (ed.). Molecular and diagnostic procedures in mycoplasmology. San Diego, Academic Press, 1995. 483 p.

17. Gundersen D. E., Lee I.-M. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea, 1996, vol. 35, no. 3, pp. 144-151.

18. Lee I.-M., Bertaccini A., Vibio M., Gundersen D. E. Detection of multiple phytoplasmas in perennial fruit trees with decline symptoms in Italy. Phytopathology, 1995, vol. 85, pp. 728-735. https://doi.org/10.1094/Phyto-85-728.

19. Schneider B., Seemuller E. Strain differentiation of ‘Candidatus Phytoplasma mali’ by SSCP and sequence analyses of the hflB gene. Journal Plant Pathology, 2009, vol. 91, no. 1, pp. 103-112.

20. Schaper U., Seemuller E. Condition of the phloem and the persistence of mycoplasmalike organisms associated with apple proliferation and pear decline. Phytopathology, 1982, vol. 72, pp. 736-742. https://doi.org/10.1094/Phyto-72-736

21. Green M. J., Thompson D. A., MacKenzie D. J. Easy and efficient DNA extraction from woody plants for the detection of phytoplasmas by polymerase chain reaction. Plant Disease, 1999, vol. 83, no. 5, pp. 482-485. https://doi.org/10.1094/PDIS.1999.83.5.482

22. Waterworth H. E., Mock R. An Assessment of nested PCR to detect phytoplasmas in imported dormant buds and internodal tissues of quarantined tree fruit germ plasm. Plant Disease, 1999, vol. 83, no. 11, pp. 1047-1050. https://doi.org/10.1094/PDIS.1999.83.11.1047


Review

Views: 504


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)