The identification and molecular characteristics of Belarusian apple proliferation phytoplasma isolates
https://doi.org/10.29235/1029-8940-2021-66-1-88-97
Abstract
It is known that optimal source of samples for diagnostic of apple proliferation phytoplasma in autumn is roots. In case of the occurrence of pronounced characteristic symptoms - “witches’ broom”, can be used symptomatic shoots.
Real-time PCR with primer pair Phyto-F/Phyto-R and probe Phyto-P and nested PCR with primer pair P1/Tint and fO1/ rO1 can be used to detect Candidatus Phytoplasma mali with a high degree of sensitivity and reproducibility.
Comparison of the nucleotide sequences of Belarusian isolates with the sequences presented in EMBL/GenBank showed that all Belarusian phytoplasma isolates detected on apple cultivars Alesya, Syabryna, Pamyat Sikory belong to species Candidatus Phytoplasma mali. The nucleotide sequences are placed in international database (EMBL/GenBank) with identification numbers (LR701160, LR701188, LR701436, LR701155, LR701438, LR701439, LR701440). The identity of the nucleotide sequences of region of 16S rRNA gene of Belarusian samples of Ca. P. mali ranged from 99.7 to 100.0 %, and hflB gene region ranged from 99.6 to 100.0 %.
About the Authors
T. N. BazhydaiBelarus
Tatsiana N. Bazhydai - Ph. D. (Biol.), Senior Researcher.
2, Kovalyov Str., 223013, а/с Samokhvalovichy, Minsk Region
E. V. Kolbanova
Belarus
Elena V. Kolbanova - Ph. D. (Biol.), Associate Professor, Head of the Laboratory.
2, Kovalyov Str., 223013, а/с Samokhvalovichy, Minsk Region
N. V. Kukharchyk
Belarus
Natallia V. Kukharchyk - D. Sc. (Agricult.), Professor, Head of the Department.
2, Kovalyov Str., 223013, а/с Samokhvalovichy, Minsk Region
References
1. Seemuller E., Schneider B. ‘Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus Phytoplasma prunorum’, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. International Journal of Systematic and Evolutionary Microbiology, 2004, vol. 54, pp. 1217-1226. https://doi.org/10.1099/ijs.0.02823-0
2. Lee I.-М., Gundersen-Rindal D. E., Davis R. E., Bartoszyk I. M. Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic Bacteriology, 1998, vol. 48, no. 4, pp. 1153-1169. https://doi.org/10.1099/00207713-48-4-1153
3. PM 7/62 (2) ‘Candidatus phytoplasmas mali’, ‘Ca. P. pyri’ and ‘Ca. P. prunorum’. EPPO Bulletin, 2017, vol. 47, no. 2, pp. 146-163. https://doi.org/10.1111/epp.12380
4. Maejima K., Oshima K., Namba Sh. Exploring the phytoplasmas, plant pathogenic bacteria. Journal of General Plant Pathology, 2014, vol. 80, no. 3, pp. 210-221. https://doi.org/10.1007/s10327-014-0512-8
5. Eben A., Gross J. Innovative vector control. New perspectives in phytoplasma disease management. COST action FA0807 Workshop. Barcelona, Spain, 2013, pp. 38-40. Available at: http://costphytoplasma.ipwgnet.org/PDF%20files/BOOK%20COST%20BCN%202013%20080313web.pdf (accessed 02.03.2019).
6. Bertaccini A., Duduk B. Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathologia Mediterranea, 2009, vol. 48, no. 3, pp. 355-378.
7. Marzachi C. Molecular diagnosis of phytoplasmas. Arab Journal of Plant Protection, 2006, vol. 24, no. 2, pp. 139-142.
8. Berges R., Rott M., Seemuller E. Range of phytoplasma concentration in various hosts as determined by competitive polymerase chain reaction. Phytopathology, 2000, vol. 90, pp. 1145-1152. https://doi.org/10.1094/PHYTO.2000.90.10.1145
9. Constable F. E., Gibb K. S., Symons R. H. Seasonal distribution of phytoplasmas in Australian grapevines. Plant Pathology, 2003, vol. 52, no. 3, pp. 267-276. https://doi.org/10.1046/j.1365-3059.2003.00849.x
10. Garcia-Chapa M., Medina V., Viruel M. A., Lavina A. Batlle A. Seasonal detection of pear decline phytoplasma by nested-PCR in different pear cultivars. Plant Pathology, 2003, vol. 52, no. 4, pp. 513-520. https://doi.org/10.1046/j.1365-3059.2003.00868.x
11. Prezelj N., Nikolic P., Gruden K., Ravnikar M., Dermastia M. Spatiotemporal distribution of flavescence doree phytoplasma in grapevine. Plant Pathology, 2012, vol. 62, no. 4, pp. 760-766. https://doi.org/10.1111/j.1365-3059.2012.02693.x
12. Christensen N. M., Nicolaisen M., Hansen M., Schulz A. Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Molecular Plant - Microbe Interactions, 2004, vol. 17, no. 11, pp. 1175-1184. https://doi.org/10.1094/MPMI.2004.17.11.1175
13. Smart C. D., Schneider B., Blomquist C. L., Guerra L. J., Harrison N. A., Ahrens U., Lorenz K. H., Seemuller E., Kirkpatrick B. C. Phytoplasma-specific PCR primers based on sequences of the 16S-23S rRNA spacer region. Applied and Environmental Microbiology, 1996, vol. 62, no. 8, pp. 2988-2993. https://doi.org/10.1128/aem.62.8.2988-2993.1996
14. Lorenz K.-H., Schneider B., Ahrens U., Seemuller E. Detection of the apple proliferation and pear decline phytoplasmas by PCR amplification of ribosomal and non-ribosomal DNA. Phytopathology, 1995, vol. 85, pp. 771-776. https://doi.org/10.1094/Phyto-85-771
15. Deng S., Hiruki C. Amplification of 16S rRNA genes from culturable and nonculturable mollicutes. Journal of Microbiological Methods, 1991, vol. 14, no. 1, pp. 53-61. https://doi.org/10.1016/0167-7012(91)90007-D
16. Razin S., Tully J. G. (ed.). Molecular and diagnostic procedures in mycoplasmology. San Diego, Academic Press, 1995. 483 p.
17. Gundersen D. E., Lee I.-M. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea, 1996, vol. 35, no. 3, pp. 144-151.
18. Lee I.-M., Bertaccini A., Vibio M., Gundersen D. E. Detection of multiple phytoplasmas in perennial fruit trees with decline symptoms in Italy. Phytopathology, 1995, vol. 85, pp. 728-735. https://doi.org/10.1094/Phyto-85-728.
19. Schneider B., Seemuller E. Strain differentiation of ‘Candidatus Phytoplasma mali’ by SSCP and sequence analyses of the hflB gene. Journal Plant Pathology, 2009, vol. 91, no. 1, pp. 103-112.
20. Schaper U., Seemuller E. Condition of the phloem and the persistence of mycoplasmalike organisms associated with apple proliferation and pear decline. Phytopathology, 1982, vol. 72, pp. 736-742. https://doi.org/10.1094/Phyto-72-736
21. Green M. J., Thompson D. A., MacKenzie D. J. Easy and efficient DNA extraction from woody plants for the detection of phytoplasmas by polymerase chain reaction. Plant Disease, 1999, vol. 83, no. 5, pp. 482-485. https://doi.org/10.1094/PDIS.1999.83.5.482
22. Waterworth H. E., Mock R. An Assessment of nested PCR to detect phytoplasmas in imported dormant buds and internodal tissues of quarantined tree fruit germ plasm. Plant Disease, 1999, vol. 83, no. 11, pp. 1047-1050. https://doi.org/10.1094/PDIS.1999.83.11.1047