Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Molecular-genetic analysis markers for identification of Rhodococcus bacteria species

https://doi.org/10.29235/1029-8940-2021-66-1-26-36

Abstract

It was established that groEL genes can be used as molecular genetic markers for species identification of Rhodococcus bacteria. A restriction analysis scheme was developed for the PCR products of groEL genes using restriction enzymes BglI, NarI, SfiI, SinI, and RseI to identify the species of natural Rhodococcus bacteria. Fifty-two genome loci determining the resistance to stressful environmental condition were annotated in genome of R. pyridinivorans strain 5Ap (i.e. 49 structural and 4 regulatory genes that determine the synthesis of 23 heat shock proteins, 9 universal stress proteins, 17 P450 cytochromes). The unique nucleotide sequences encoding the synthesis of the heat shock protein DnaK (1 plasmid gene) and P450 cytochromes (2 chromosomal and 1 plasmid) were found among these genes. Thus, they can be used for molecular typing of the biotechnological R. pyridinivorans strain 5Ap.

About the Authors

H. A. Bukliarevich
Belarusian State University
Russian Federation

Hanna A. Bukliarevich - Junior Researcher

4, Nezavisimosti Ave., 220030, Minsk



M. A. Titok
Belarusian State University
Russian Federation

Marina A. Titok - D. Sc. (Biol.), Professor

4, Nezavisimosti Ave., 220030, Minsk



References

1. Solyanikova I., Golovleva L. Biochemical features of the degradation of pollutants by Rhodococcus as a basis for contaminated wastewater and soil cleanup. Mikrobiologiia, 2011, vol. 80, no. 5, pp. 591-607. https://doi.org/10.1134/s0026261711050158

2. Bell K. S., Philp J. C., Aw D. W. J., Christofi N. The genus Rhodococcus. UK Journal of Applied Microbiology, 1998, vol. 85, no. 2, pp. 195-210. https://doi.org/10.1046/j.1365-2672.1998.00525.x

3. Majidzadeh M., Fatahi-Bafghi M. Current taxonomy of Rhodococcus species and their role in infections. European Journal of Clinical Microbiology & Infectious Diseases, 2018, vol. 37, no. 11, pp. 2045-2062. https://doi.org/10.1007/s10096-018-3364-x

4. Bryan L. K., Alexander E. R., Lawhon S. D., CohenN. D. Detection of vapN in Rhodococcus equi isolates cultured from humans. PLoS ONE, 2018, vol. 13, no. 1, p. e0190829. https://doi.org/10.1371/journal.pone.0190829

5. Navas J., Gonzalez-Zorn B., Ladron N., Garrido P., Vazquez-Boland J. A. Identification and mutagenesis by allelic exchange of choE, encoding a cholesterol oxidase from the intracellular pathogen Rhodococcus equi. Journal of Bacteriology, 2001, vol. 183, no. 16, pp. 4796-4805. https://doi.org/10.1128/jb.183.16.4796-4805.2001

6. Ladron N., Fernandez M., Aguero J., Zorn B. G., Vazquez-Boland J. A., Navas J. Rapid identification of Rhodococ cus equi by a PCR assay targeting the choE gene. Journal of Clinical Microbiology, 2003, vol. 41, no. 7, pp. 3241-3245. https://doi.org/10.1128/jcm.41.7.3241-3245.2003

7. Tancsics A.,Szoboszlay S., Kriszt B., Kukolya J., Baka E., Marialigeti K., Revesz S. Applicability of the functional gene catechol 1, 2-dioxygenase as a biomarker in the detection of BTEX-degrading Rhodococcus species. Journal of Applied Microbiology, 2008, vol. 105, no. 4, pp. 1026-1033. https://doi.org/10.1111/j.1365-2672.2008.03832.x

8. Duquesne F., Houssin E., Sevin C., Duytschaever L., Tapprest J., Fretin D., Hebert L., Laugier C., Petry S. Development of a multilocus sequence typing scheme for Rhodococcus equi. Veterinary Microbiology, 2017, vol. 210, pp. 64-70. https://doi.org/10.1016/j.vetmic.2017.08.010

9. Bell K. S., Kuyukina M. S., Heidbrink S., Philp J. C., Aw D. W. J., Ivshina I. B., Christofi N. Identification and environmental detection of Rhodococcus species by 16S rDNA-targeted PCR. Journal of Applied Microbiology, 1999, vol. 87, no. 4, pp. 472-480. https://doi.org/10.1046/j.1365-2672.1999.00824.x

10. Tancsics A., Benedek T., Farkas M., Mathe I., Marialigeti K., Szoboszlay S., Kukolya J., Kriszt B. Sequence analysis of 16S rRNA, gyrB and catA genes and DNA-DNA hybridization reveal that Rhodococcus jialingiae is a later synonym of Rhodococcus qingshengii. International Journal of Systematic and Evolutionary Microbiology, 2014, vol. 64, no. 1, pp. 298-301. https://doi.org/10.1099/ijs.0.059097-0

11. Sangal V., Goodfellow M., Jones A. L., Schwalbe E. C., Blom J., Hoskisson P. A., Sutcliffe I. C. Next-generation systematics: an innovative approach to resolve the structure of complex prokaryotic taxa. Scientific Reports, 2016, vol. 6, art. 38392. https://doi.org/10.1038/srep38392

12. Ruiz-Gonzalez M. X., Fares M. A. Coevolution analyses illuminate the dependencies between amino acid sites in the chaperonin system GroES-L. BMC Evolutionary Biology, 2013, vol. 13, no. 1, p. 156. https://doi.org/10.1186/1471-2148-13-156

13. Barreiro C., Gonzalez-Lavado E., Patek M., Martin J.-F. Transcriptional analysis of the groES-groELl, groEL2, and dnaK genes in Corynebacterium glutamicum: characterization of heat shock-induced promoters. Journal of Bacteriology, 2004, vol. 186, no. 14, pp. 4813-4817. https://doi.org/10.1128/jb.186.14.4813-4817.2004

14. Hu Y., Henderson B., Lund P. A., Tormay P., Ahmed M. T., Gurcha S. S., Besra G. S., Coates A. R. M. A mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.l is viable but fails to induce an inflammatory response inanimal models of infection. Infection and Immunity, 2008, vol. 76, no. 4, pp. 1535-1546. https://doi.org/10.1128/iai.01078-07

15. Ojha A., Anand M., Bhatt A., Kremer L., Jacobs W. R., Hatfull G. F. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell, 2005, vol. 123, no. 5, pp. 861-873. https://doi.org/10.3410/f.1030372.358632

16. Delegan Ya. A., Vetrova A. A., Chernyavskaya M. I., Titok M. A., Ivanova A. A., Filonov A. E., Boronin A. M. Thermotolerant bacterial strains consortium for oil and oil products degradation in soil and waters in hot climates: Patent RF, no. 2617941, 2017.

17. Chernyavskaya M. I., Buklyarevich A. A., Okhremchuk A. E., Valentovich L. N., Titok M. A. Primary analysis of the genome of oil-degrading bacteria Rhodococcus pyridinivorans 5Ap. Trudy Belorusskogo gosudarstvennogo universiteta. Seriya: Fiziologicheskie, biokhimicheskie i molekulyarnye osnovy funktsionirovaniya biosistem [Proceedings of the Belarusian State University. Series: Physiological, biochemical and molecular foundations of the functioning of biosystems], 2016, vol. 11, no. 1, pp. 219-223 (in Russian).


Review

Views: 704


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)