Phylogeography and genetic diversity of the common snipe Gallinago gallinago Linnaeus, 1758 in the Palearctic according to the data of the mtDNA
https://doi.org/10.29235/1029-8940-2021-66-1-17-25
Abstract
There are practically no studies on the genetic diversity and phylogeography of the common snipe. At the same time, there is a lot of research in this field for a number of other species of waders. It is known that comparison of phylogeographic data on the widest possible range of species that have an assumed common evolutionary history due to the influence of similar biogeographic, geological and climatic factors is necessary to establish the factors of similarity or differences in the patterns of formation and dynamics of their ranges, the patterns (regularities) of the formation of the population genetic structure. Thereby the goal of this article is to get data on the phylogeography of the common snipe in the Palearctic. The mtDNA control region is used as a genetic marker. As the result of analyzing data on polymorphism of mtDNA control region of common snipe, we have found out that its population is characteristic of low genetic diversity and genetic homogeneity. Also it has been shown that there are some signs of distinct genetic line of common snipe present at the easternmost part of its range in the Palearctic.
Keywords
About the Authors
K. V. HomelBelarus
Kanstantsin V. Homel - Ph. D. (Biol.), Leading Researcher.
27, Akademi¬cheskaya Str., 220072, Minsk
M. E. Nikiforov
Belarus
Mikhail E. Nikiforov - Academician, D. Sc. (Biol.), Pro-fessor, Head of the Laboratory.
27, Akademicheskaya Str., 220072, Minsk
A. V. Shpak
Belarus
Aleksey V. Shpak - Senior Researcher.
27, Akademicheskaya Str., 220072, Minsk
E. E. Kheidorova
Belarus
Ekaterina E. Kheidorova - Ph. D. (Biol.), Leading Researcher.
27, Akademicheskaya Str., 220072, Minsk
A. A. Valnisty
Belarus
Arseni A. Valnisty - Junior Researcher.
27, Akademicheskaya Str., 220072, Minsk
References
1. Avise J. C. Phylogeography: The History and Formation of Species. Cambridge, Harvard University Press, 2000. 447 p.
2. Gutierrez-Garda T. A., Vazquez-Domrnguez E. Comparative phylogeography: designing studies while surviving the process. BioScience, 2011, vol. 61, no. 11, pp. 857-868. https://doi.org/10.1525/bio.2011.61.11.5
3. Common Snipe Gallinago gallinago. Available at: http://datazone.birdlife.org/species/factsheet/common-snipe-galli-nago-gallinago (accessed 01.12.2020).
4. Van Gils J., Wiersma P., Kirwan G. M., Sharpe C. J. Common Snipe (Gallinago gallinago). Birds of the World, 2020. https://doi.org/10.2173/bow.comsni.01
5. Ronka N. Phylogeography and conservation genetics of waders. Oulu, Acta Universitatis Ouluensis, 2016. 90 p.
6. Miller M. P., Haig S. M., Mullins T. D., Ruan L., Casler B., Dondua A. [et al.]. Intercontinental genetic structure and gene flow in Dunlin (Calidris alpina), a potential vector of avian influenza. Evolutionary Applications, 2015, vol. 8, no. 2, pp. 149-171. https://doi.org/10.1111/eva.12239
7. Wenink P. W., Baker A. J., Tilanus M. G. J. Hypervariable-control-region sequences reveal global population structuring in a long-distance migrant shorebird, the Dunlin (Calidris alpina). Proceedings of the National Academy of Sciences, 1993, vol. 90, no. 1, pp. 94-98. https://doi.org/10.1073/pnas.90.1.94
8. Conklin J. R., Reneerkens J., Verkuil Y. I., Tomkovich P. S., Palsb0ll P J., Piersma T. Low genetic differentiation between Greenlandic and Siberian Sanderling populations implies a different phylogeographic history than found in Red Knots. Journal of Ornithology, 2016, vol. 157, no. 1, pp. 325-332. https://doi.org/10.1007/s10336-015-1284-4
9. Quinn T. W., Wilson A. C. Sequence evolution in and around the mitochondrial control region in birds. Journal of Molecular Evolution, 1993, vol. 37, no. 4, pp. 417-425. https://doi.org/10.1007/BF00178871
10. Tamura K., Stecher G., Peterson D., Filipski A. S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 2013, vol. 30, no. 12, pp. 2725-2729. https://doi.org/10.1093/molbev/mst197
11. Rozas J., Ferrer-Mata A., Sanchez-DelBarrio J. C., Guirao-Rico S., Librado P., Ramos-Onsins S. E, Sanchez-Gracia A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Datasets. Molecular Biology and Evolution, 2017, vol. 34, no. 12, pp. 3299-3302. https://doi.org/10.1093/molbev/msx248
12. PopART (Population Analysis with Reticulate Trees). Available at: http://popart.otago.ac.nz/index.shtml (accessed 01.12.2020).
13. Excoffier L., Laval G., Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 2007, vol. 1, pp. 47-50. https://doi.org/10.1177/117693430500100003
14. Ramos-Onsins S. E., Rozas J. Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution, 2002, vol. 19, no. 12, pp. 2092-2100. https://doi.org/10.1093/oxfordjournals.molbev.a004034
15. Rogers A. R., Harpending H. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 1992, vol. 9, no. 3, pp. 552-569. https://doi.org/10.1093/oxfordjournals.molbev.a040727
16. Maltagliati F., Giuseppe G. Di., Barbieri M., Castelli A., Dini F. Phylogeography and genetic structure of the edible sea urchin Paracentrotus lividus (Echinodermata: Echinoidea) inferred from the mitochondrial cytochrome b gene. Biological Journal of the Linnean Society, 2010, vol. 100, no. 4, pp. 910-923. https://doi.org/10.1111/j.1095-8312.2010.01482.x
17. Nikiforov M. E. Formation and structure of the avifauna of Belarus. Minsk, Belorusskaya nauka Publ., 2008. 297 p.