1. Papenbrock J., Mock H.-P., Kruse E., Grimm B. Expression studies in tetrapyrrole biosynthesis. Inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods. Planta, 1999, vol. 208, no. 2, rr. 264-273. https://doi.org/10.1007/s004250050558
2. Sopori S. K. The influence of light and abiotic stress factors on the expression of plant genes. Genetic approaches to creating plants resistant to soil salinization. Fotobiologiya rastenii i fotosintez [Plant photobiology and photosynthesis]. Minsk, 2004, pp. 29-65 (in Russian).
3. Parida A. K., Das A. B. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 2005, vol. 60, no. 3, pp. 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
4. Ingram J., Bartels D. The molecular basis of cellular dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, vol. 47, no. 1, pp. 377-403. https://doi.org/10.1146/annurev.arplant.47.1.377
5. Bray E. A. Plant responses to water deficit. Trends in Plant Science, 1997, vol. 2, no. 2, pp. 48-54. https://doi.org/10.1016/s1360-1385(97)82562-9
6. Usatov A. I., Fedorenko G. M., Shcherbakova L. B., Mashkina E. V. Ultrastructure of chloroplasts of mustard Brassica junceae as an indicator of salt resistance. Tsitologiya [Cytology], 2004, vol. 46, no. 12, pp. 1035-1042 (in Russian).
7. Markin N. V., Usatov A. I., Fedorenko G. M. RAPD analysis of the genotypes of salt-resistant forms of mustard Brassica junceae L. Ekologicheskii vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva [Ecological bulletin of scientific centers of the Black Sea Economic Commonwealth], 2006, no. 3, pp. 99-192 (in Russian).
8. Shemin D. Delta-aminolevulinic acid dehydrase from Rhodopseudomonas spheroids. Methods in Enzymology, 1962, vol. 5, pp. 883-884. https://doi.org/10.1016/s0076-6879(62)05333-1
9. Soliman E. F., W. Jr. Slikker, S. F. Ali. Manganese-induced oxidative stress as measured by a fluorescent probe: an in vitro study. Neuroscience Research Communications, 1995, vol. 17, no. 3, pp. 185-193.
10. Misra N., Gupta A. K. Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Science, 2005, vol. 169, no. 2, pp. 331-339. https://doi.org/10.1016/j.plantsci.2005.02.013
11. Zemlyanukhina O. A., Kalayev V. N., Voronina V. S. Growth and development of weigela plants of the blooming “Variegat” in an in vitro culture under conditions of salt stress. Sovremennye problemy nauki i obrazovaniya [Modern problems of science and education], 2016, no. 6. Available at: https://science-education.ru/ru/article/view?id=26019 (accessed 31.03.2020) (in Russian).
12. Kuznetsov Vl. V., Shevyakova N. I. Proline under stress: biological role, metabolism, regulation. Fiziologiya rastenii [Plant physiology], 1999, vol. 46, pp. 321-336 (in Russian).
13. Kishor P. V. K., Sangam S., Amrutha R. N., Laxmi P. S., Naidu K. R., Rao K. R. S. S., Rao S., Reddy K. J., Theriappan P., Sreenivasulu N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implication in plant growth and abiotic stress tolerance. Current Science, 2005, vol. 88, pp. 424-438.
14. Foyer C. H., Lelandais M., Kunert K. J. Photooxidative stress in plants. Physiologia Plantarum, 1994, vol. 92, no. 4, pp. 696-717. https://doi.org/10.1034/j.1399-3054.1994.920422.x
15. Meneguzzo S., Navari-Izzo F., Izzo R. Antioxidative responses of shoots and roots of wheat to increasing NaCl concentrations. Journal of Plant Physiology, 1999, vol. 155, no. 2, pp. 274-280. https://doi.org/10.1016/s0176-1617(99)80019-4
16. Polesskaya O. G., Kashirina E. K., Alekhina N. D. The influence of salt stress on the antioxidant system of plants depending on the conditions of nitrogen nutrition. Fiziologiya rastenii [Plant physiology], 2006, vol. 53, pp. 207-214 (in Russian).
17. Yaronskaya E. B., Vershilovskaya I. V., Averina N. G. The content of zeatin and its derivatives in seedlings of barley (Hordeum vulgare L.) with an elevated level of 5-aminolevulinic acid. Vestsi Natsyyanal’nai akademii navukBelarusi. Seryya biyalagichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Biological series, 2004, no. 3, pp. 70-73 (in Russian).
18. Averina N. G., Yaronskaya E. B. Biosynthesis of tetrapyrroles in plants. Minsk, Belaruskaya navuka Publ., 2012. 413 p. (in Russian).
19. Averina N. G., Gritskevich E. R. Mechanisms of resistance of barley plants to salt stress under the action of 5-aminolevulinic acid. Fiziologiya rastenii [Plant physiology], 2010, vol. 57, pp. 849-846 (in Russian).
20. Averina N. G., Beizai Z., Shcherbakov R. A. Molecular mechanisms of nitrate reductase regulation by exogenous 5-aminolevulinic acid in barley seedlings grown under saline conditions with sodium chloride. Doklady Natsyyanal’nai akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2015, vol. 59, no. 4, pp. 95-101 (in Russian).
21. Averina N. G., Beizai Z., Shcherbakov R. A., Usatov A. V. The role of nitrogen metabolism in the formation of salt tolerance of barley plants (Hordeum vulgare L.) and wheat (Triticum aestivum). Fiziologiya rastenii [Plant physiology], 2014, vol. 61, pp. 106-113 (in Russian).