Interactions of dendrimers and dendronized nanoparticles with proteins
https://doi.org/10.29235/1029-8940-2020-65-4-497-509
Abstract
Dendrimers are hyperbranched polymers belonging to the class of nanomaterials. These nanostructures and their derivatives (dendrons and dendronized nanoparticles) are multi-target nanocarriers that can be modified to achieve various tasks. For example, it is possible to increase biocompatibility and stability, to control the release of active substances. Their widespread use in biology and medicine requires an understanding of the basic mechanisms of their interaction with proteins - one of the main biological systems. The interaction of dendrimers with proteins may vary depending on the size of the ones, surface charge, structure and stiffness of the branches. Here, both electrostatic interactions arising due to the presence of dendrimers and surface charge proteins, as well as hydrophobic ones, due to the corresponding cavities in the structure of dendrimers, can manifest themselves here. The formation of hydrogen bonds is possible. All these interactions in one way or another can affect the structure and functions of proteins.
Present article discusses the mechanisms of interactions between dendrimers, dendronized nanoparticles and protein macromolecules. The effect of nanoparticles on the secondary structure, conformation, dynamics and functional activity of proteins is reviewed. The different models for dendrimer-protein interactions are described.
About the Authors
V. M. AbashkinBelarus
Viktar М. Abashkin - Junior Researcher.
27, Akademicheskaya Str., 220072, Minsk
M. M. Terehova
Belarus
Maria M. Terehova - Junior Researcher.
27, Akademicheskaya Str., 220072, Minsk
I. V. Halets-Bui
Belarus
Inessa V. Halets-Bui - Ph. D. (Biol.), Senior Researcher.
27, Akademicheskaya Str., 220072, Minsk
S. G. Loznikova
Belarus
Svetlana G. Loznikova - Ph. D. (Biol.), Senior Researcher.
27, Akademicheskaya Str., 220072, Minsk
V. G. Dzmitruk
Belarus
Volha G. Dzmitruk - Ph. D. (Biol.), Leading Researcher.
27, Akademicheskaya Str., 220072, Minsk
K Milowska
Poland
Katarzyna Milowska - D. Sc. (Biol.), Professor, Senior Lecturer.
141/143, Pomorska Str., 90-236, Lodz
D. G. Shcharbin
Belarus
Dzmitry G. Shcharbin - D. Sc. (Biol.), Assistant Professor, Head of the Laboratory.
27, Akademicheskaya Str., 220072, Minsk
References
1. Adkins J. N., Varnum S. M., Auberry K. J., Moore R. J., Angell N. H., Smith R. D., Springer D. L., Pounds J. G. Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Molecular and Cellular Proteomics, 2002, vol. 1, no. 12, pp. 947-955. https://doi.org/10.1074/mcp.M200066-MCP200
2. Shen Y., Kim J., Strittmatter E. F., Jacobs J. M., Camp D. G., Fang R., Tolie N., Moore R. J., Smith R. D. Characterization of the human blood plasma proteome. Proteomics, 2005, vol. 5, no. 15, pp. 4034-4045. https://doi.org/10.1002/pmic.200401246
3. Schutzer S. E., Liu T., Natelson B. H., Angel T. E., Schepmoes A. A., Purvine S. O., Hixson K. K., Lipton M. S., Camp D. G., Coyle P. K., Smith R. D., Bergquist J. Establishing the proteome of normal human cerebrospinal fluid. PloS ONE, 2010, vol. 5, no. 6, p. e10980. https://doi.org/10.1371/journal.pone.0010980
4. Nel A. E., Madler L., Velegol D., Xia T., Hoek E. M., Somasundaran P., Klaessig F., Castranova V., Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 2009, vol. 8, no. 7, pp. 543-557. https://doi.org/10.1038/nmat2442
5. Tomalia D. A., Baker H., Dewald J., Hall M., Kallos G., Martin S., Roeck J., Ryder J., Smith P. A new class of polymers: starburst-dendritic macromolecules. Polymer Journal, 2002, vol. 34, no. 5, pp. 132-147.
6. Menjog, A. R., Kannan R. M., Tomalia D. A. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discovery Today, 2010, vol. 15, no. 5-6, pp. 171-185. https://doi.org/10.1016/j.drudis. 2010.01.009
7. Mignani S., Bryszewska M., Zablocka M., Klajnert-Maculewicz B., Cladera J., Shcharbin D., Majoral J.-P. Can dendrimer based nanoparticles fight neurodegenerative diseases? Current situation versus other established approaches. Progress in Polymer Science, 2017, vol. 64, pp. 23-51. https://doi.org/10.1016/j.progpolymsci.2016.09.006
8. Tomalia D. A. Dendritic effects: dependency of dendritic nano-periodic property patterns on critical nanoscale design parameters (CNDPs). New Journal of Chemistry, 2012, vol. 36, no. 2, pp. 264-281. https://doi.org/10.1039/ClNJ20501C
9. Tomalia D. A., Christensen J. B., Boas U. Dendrimers, dendrons, and dendritic polymers. Discovery, applications, and the future. Cambridge, Cambridge University Press, 2012. 420 p.
10. Shakhbazau A., Mishra M., Chu T. H., Brideau C., Cummins K., Tsutsui S. [et al.]. Fluorescent phosphorus dendrimer as a spectral nanosensor for macrophage polarization and fate tracking in spinal cord injury. Macromolecular Bioscience, 2015, vol. 15, no. 11, pp. 1523-1534. https://doi.org/10.1002/mabi.201500150
11. Tomalia D. A., Khanna S. N. A systematic framework and nanoperiodic concept for unifying nanoscience: Hard/ soft nanoelements, superatoms, meta-atoms, new emerging properties, periodic property patterns, and predictive Mendeleev-like nanoperiodic tables. Chemical Reviews, 2016, vol. 116, no. 4, pp. 2705-2774. https://doi.org/10.1021/acs.chemrev. 5b00367
12. Shcharbin D., Pedziwiatr E., Bryszewska M. How to study dendriplexes I: Characterization. Journal of Controlled Release, 2009, vol. 135, no. 3, pp. 186-197. https://doi.org/10.1016/jjconrel.2009.01.015
13. Shcharbin D., Pedziwiatr E., Blasiak J., Bryszewska M. How to study dendriplexes II: Transfection and cytotoxicity. Journal of Controlled Release, 2010, vol. 141, no. 2, pp. 110-127. https://doi.org/10.1016/jjconrel.2009.09.030
14. Maszewska M., Leclaire J., Cieslak M., Nawrot B., Okruszek A., Caminade A. M., Majoral J. P. Water-soluble polycationic dendrimers with a phosphoramidothioate backbone: preliminary studies of cytotoxicity and oligonucleotide/plasmid delivery in human cell culture. Oligonucleotides, 2003, vol. 13, no. 4, pp. 193-205. https://doi.org/10.1089/154545703322460586
15. Bermejo J. F., Ortega P., Chonco L., Eritja R., Samaniego R., Mullner M. [et al.]. Water-soluble carbosilane dendrimers: synthesis biocompatibility and complexation with oligonucleotides; evaluation for medical applications. Chemistry - a European Journal, 2007, vol. 13, no. 2, pp. 483-495. https://doi.org/10.1002/chem.200600594
16. Mignani S., El Kazzouli S., Bousmina M. M., Majoral J. P. Dendrimer space exploration: an assessment of dendrimers/dendritic scaffolding as inhibitors of protein-protein interactions, a potential new area of pharmaceutical development. Chemical Reviews, 2014, vol. 114, no. 2, pp. 1327-1342. https://doi.org/10.1021/cr400362r
17. Mignani S., El Kazzouli S., Bousmina M., Majoral J. P. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Advanced Drug Delivery Reviews, 2013, vol. 65, no. 10, pp. 1316-1330. https://doi.org/10.1016/j.addr.2013.01.001
18. Ottaviani M. F., Jockusch S., Turro N. J., Tomalia D. A., Barbon A. Interactions of dendrimers with selected amino acids and proteins studied by continuous wave EPR and Fourier transform EPR. Langmuir, 2004, vol. 20, no. 23, pp. 1023810245. https://doi.org/10.1021/la0485881
19. Giri J., Diallo M. S., Simpson A. J., Liu Y., Goddard III W. A., Kumar R., Woods G. C. Interactions of poly (amidoamine) dendrimers with human serum albumin: binding constants and mechanisms. Acs Nano, 2011, vol. 5, no. 5, pp. 3456-3468. https://doi.org/10.1021/nn1021007
20. Shcharbin D., Klajnert B., Bryszewska M. The effect of PAMAM dendrimers on human and bovine serum albumin at different pH and NaCl concentrations. Journal of Biomaterials Science, Polymer Edition, 2005, vol. 16, no. 9, pp. 1081-1093. https://doi.org/10.1163/1568562054798518
21. Shcharbin D., Shcharbina N., Dzmitruk V., Pedziwiatr-Werbicka E., Ionov M., Mignani S. [et al.]. Dendrimer-protein interactions versus dendrimer-based nanomedicine. Colloids and Surfaces B: Biointerfaces, 2017, vol. 152, pp. 414-422. https://doi.org/10.1016/j.colsurfb.2017.01.041
22. Andre S., Cejas Ortega P. J., Perez M. A., Roy R., Gabius H.-J. Lactose-containing starburst dendrimers: influence of dendrimer generation and binding-site orientation of receptors (plant/animal lectins and immunoglobulins) on binding properties. Glycobiology, 1999, vol. 9, no. 11, pp. 1253-1261. https://doi.org/10.1093/glycob/9.11.1253
23. Page D., Zanini D., Roy R. Macromolecular recognition: effect of multivalency in the inhibition of binding of yeast mannan to concanavalin A and pea lectins by mannosylated dendrimers. Bioorganic and Medicinal Chemistry, 1996, vol. 4, no. 11, pp. 1949-1961. https://doi.org/10.1016/S0968-0896(96)00177-0
24. Froehlich E., Mandeville J. S., Jennings C. J., Sedaghat-Herati R., Tajmir-Riahi H. A. Dendrimers bind human serum albumin. Journal of Physical Chemistry B, 2009, vol. 113, no. 19, pp. 6986-6993. https://doi.org/10.1021/jp9011119
25. Giehm L., Christensen C., Boas U., Heegaard P. M., Otzen D. E. Dendrimers destabilize proteins in a generation-dependent manner involving electrostatic interactions. Biopolymers: Original Research on Biomolecules, 2008, vol. 89, no. 6, pp. 522-529. https://doi.org/10.1002/bip.20921
26. Camarada M. B., Marquez-Miranda V., Araya-Duran I., Yevenes A., Gonzalez-Nilo F. PAMAM G4 dendrimers as inhibitors of the iron storage properties of human L-chain ferritin. Physical Chemistry Chemical Physics, 2015, vol. 17, no. 29, pp. 19001-19011. https://doi.org/10.1039/C5CP02594J
27. Martinho N., Florindo H., Silva L., Brocchini S., Zloh M., Barata T. Molecular modeling to study dendrimers for biomedical applications. Molecules, 2014, vol. 19, no. 12, pp. 20424-20467. https://doi.org/10.3390/molecules191220424
28. Gabellieri E., Strambini G. B., Shcharbin D., Klajnert B., Bryszewska M. Dendrimer-protein interactions studied by tryptophan room temperature phosphorescence. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2006, vol. 1764, no. 11, pp. 1750-1756. https://doi.org/10.1016/j.bbapap.2006.09.008
29. Shcharbin D., Ottaviani M. F., Cangiotti M., Przybyszewska M., Zaborski M., Bryszewska M. Impact of PAMAM G2 and G6 dendrimers on bovine serum albumin (fatty acids free and loaded with different fatty acids). Colloids and Surfaces B: Biointerfaces, 2008, vol. 63, no. 1, pp. 27-33. https://doi.org/10.1016/j.colsurfb.2007.10.020
30. Ruenraroengsak P., Florence A. T. Biphasic interactions between a cationic dendrimer and actin. Journal of Drug Targeting, 2010, vol. 18, no. 10, pp. 803-811. https://doi.org/10.3109/1061186X.2010.521159
31. Nowacka O., Shcharbin D., Klajnert-Maculewicz B., Bryszewska M. Stabilizing effect of small concentrations of PAMAM dendrimers at the insulin aggregation. Colloids and Surfaces B: Biointerfaces, 2014, vol. 116, pp. 757-760. https://doi.org/10.1016/j.colsurfb.2014.01.056
32. Shcharbin D., Jokiel M., Klajnert B., Bryszewska M. Effect of dendrimers on pure acetylcholinesterase activity and structure. Bioelectrochemistry, 2006, vol. 68, no. 1, pp. 56-59. https://doi.org/10.1016/j.bioelechem.2005.04.001
33. Shcharbin D., Pedziwiatr-Werbicka E., Vcherashniaya A., Janaszewska A., Marcinkowska M., Goska P. [et al.]. Binding of poly (amidoamine), carbosilane, phosphorus and hybrid dendrimers to thrombin - constants and mechanisms. Colloids and Surfaces B: Biointerfaces, 2017, vol. 155, pp. 11-16. https://doi.org/10.1016/j.colsurfb.2017.03.053
34. Shcharbin D., Ionov M., Abashkin V., Loznikova S., Dzmitruk V., Shcharbina N., Matusevich L., Milowska K., Galecki K., Wysocki S., Bryszewska M. Nanoparticle corona for proteins: mechanisms of interaction between dendrimers and proteins. Colloids and Surfaces B: Biointerfaces, 2015, vol. 134, pp. 377-383. https://doi.org/10.1016/j.colsurfb.2015.07.017
35. Shcharbin D., Shcharbina N., Milowska K., de la Mata F. J., Munoz-Fernandez M. A., Mignani S., Gomez-Ramirez R., Majoral J. P., Bryszewska M. Interference of cationic polymeric nanoparticles with clinical chemistry tests - clinical relevance. International Journal of Pharmaceutics, 2014, vol. 473, no. 1-2, pp. 599-606. https://doi.org/10.1016/j.ijpharm. 2014.07.054
36. Ionov M., Ihnatsyeu-Kachan A., Michlewska S., Shcharbina N., Shcharbin D., Majoral J. P., Bryszewska M. Effect of dendrimers on selected enzymes - Evaluation of nano carriers. International Journal of Pharmaceutics, 2016, vol. 499, no. 1-2, pp. 247-254. https://doi.org/10.1016/j.ijpharm.2015.12.056
37. Szwed A., Milowska K., Ionov M., Shcharbin D., Moreno S., Gomez-Ramirez R., de la Mata F. J., Majoral J. P., Bryszewska M., Gabryelak T. Interaction between dendrimers and regulatory proteins. Comparison of effects of carbosilane and carbosilane-viologen-phosphorus dendrimers. RSC Advances, 2016, vol. 6, no. 100, pp. 97546-97554. https://doi.org/10.1039/C6RA16558C
38. Ciolkowski M., Rozanek M., Szewczyk M., Klajnert B., & Bryszewska M. The influence of PAMAM-OH dendrimers on the activity of human erythrocytes ATPases. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2011, vol. 1808, no. 11, pp. 2714-2723. https://doi.org/10.1016/j.bbamem.2011.07.021
39. Ciolkowski M., Rozanek M., Bryszewska M., Klajnert B. The influence of PAMAM dendrimers surface groups on their interaction with porcine pepsin. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2013, vol. 1834, no. 10, pp. 1982-1987. https://doi.org/10.1016/j.bbapap.2013.06.020
40. Lin J., Hua W., Zhang Y., Li C., Xue W., Yin J., Liu Z., Qiu X. Effect of poly (amidoamine) dendrimers on the structure and activity of immune molecules. Biochimica et Biophysica Acta (BBA) - General Subjects, 2015, vol. 1850, no. 2, pp. 419-425. https://doi.org/10.1016/j.bbagen.2014.11.016
41. Serchenya T., Shcharbin D., Shyrochyna I., Sviridov O., Terekhova M., Dzmitruk V., Abashkin V., Apartsin E., Mignani S., Majoral J. P., Ionov M., Bryszewska M. Immunoreactivity changes of human serum albumin and alpha-1-microglobulin induced by their interaction with dendrimers. Colloids and Surfaces B: Biointerfaces, 2019, vol. 179, pp. 226-232. https://doi.org/10.1016/j.colsurfb.2019.03.065
42. Conde J., Ambrosone A., Sanz V., Hernandez Y., Marchesano V., Tian F., Child H., Berry C. C., Ibarra M. R., Bap-tista P. V., Tortiglione C., de la Fuente J. M. Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing. ACS Nano, 2012, vol. 6, no. 9, pp. 8316-8324. https://doi.org/10.1021/nn3030223
43. Khlebtsov N., Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chemical Society Reviews, 2011, vol. 40, no. 3, pp. 1647-1671. https://doi.org/10.1039/C0CS00018C
44. Krol S., Macrez R., Docagne F., Defer G., Laurent S., Rahman M., Hajipour M. J., Kehoe P. G., Mahmoudi M. Therapeutic benefits from nanoparticles: the potential significance of nanoscience in diseases with compromise to the blood brain barrier. Chemical Reviews, 2013, vol. 113, no. 3, pp. 1877-1903. https://doi.org/10.1021/cr200472g
45. Pissuwan D., Niidome T., Cortie M. B. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. Journal of Controlled Release, 2011, vol. 149, no. 1, pp. 65-71. https://doi.org/10.1016/jjconrel.2009.12.006
46. Pena-Gonzalez C. E., Pedziwiatr-Werbicka E., Shcharbin D., Guerrero-Beltran C., Abashkin V., Loznikova S. [et al.]. Gold nanoparticles stabilized by cationic carbosilane dendrons: synthesis and biological properties. Dalton Transactions, 2017, vol. 46, no. 27, pp. 8736-8745. https://doi.org/10.1039/C6DT03791G
47. Pedziwiatr-Werbicka E., Serchenya T., Shcharbin D., Terekhova M., Prokhira E., Dzmitruk V. [et al.]. Dendronization of gold nanoparticles decreases their effect on human alpha-1-microglobulin. International Journal of Biological Macromolecules, 2018, vol. 108, pp. 936-941. https://doi.org/10.1016/j.ijbiomac.2017.11.004
48. Shcharbin D., Pedziwiatr-Werbicka E., Serchenya T., Cyboran-Mikolajczyk S., Prakhira L., Abashkin V. [et al.]. Role of cationic carbosilane dendrons and metallic core of functionalized gold nanoparticles in their interaction with human serum albumin. International Journal of Biological Macromolecules, 2018, vol. 118, part B, pp. 1773-1780. https://doi.org/10.1016/j.ijbiomac.2018.07.023
49. Klajnert B., Stanislawska L., Bryszewska M., Palecz B. Interactions between PAMAM dendrimers and bovine serum albumin. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2003, vol. 1648, no. 1-2, pp. 115-126. https://doi.org/10.1016/S1570-9639(03)00117-1
50. Shcharbin D., Janicka M., Wasiak M., Palecz B., Przybyszewska M., Zaborski M., Bryszewska M. Serum albumins have five sites for binding of cationic dendrimers. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2007, vol. 1774, no. 7, pp. 946-951. https://doi.Org/10.1016/j.bbapap.2007.04.016
51. Licata N. A., Tkachenko A. V Kinetic limitations of cooperativity-based drug delivery systems. Physical Review Letters, 2008, vol. 100, no. 15, p. 158102. https://doi.org/10.1103/PhysRevLett.100.158102
52. Chiba F., Mann G., Twyman L. J. Investigating possible changes in protein structure during dendrimer-protein binding. Organic and Biomolecular Chemistry, 2010, vol. 8, no. 22, pp. 5056-5058. https://doi.org/10.1039/c0ob00041h