Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Influence of exogenous jasmonic acid on the functioning of a defense system of potato seedlings (Solanum tuberosum L.) grown on artificial ion exchange substrate and infected with potato virus X

https://doi.org/10.29235/1029-8940-2020-65-4-391-401

Abstract

The content of reactive oxygen species, the activities of ascorbate-glutathione cycle enzymes, the content of low molecular weight antioxidants: ascorbate and glutathione, the activity of phenolic peroxidase, the content of water-soluble phenols and the expression level of the hypersensitive response marker gene (HSR) and PR protein genes (Chit, Glu and TLP) in potato seedlings grown on an ion-exchange substrate in the presence of jasmonic acid at a concentration of 10-8 and 10-6 M and infected with potato virus X were studied. Accumulation of reactive oxygen species, an increase in the content of reduced ascorbate and an intensive consumption of reduced glutathione upon action of jasmonic acid, as well as a sharp increase in the expression of HSR, Chit, Glu, and TLP genes in the leaves of potato seedlings grown on a substrate with the addition of 10-6 M jasmonic acid before infection were shown. In control plants, the expression of the HSR and TLP genes increased only after infection with potato virus X.

About the Authors

Y. V. Viazau
Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus
Belarus

Yauhen V. Viazau - Ph. D. (Biol.), Senior Researcher.

27, Akademicheskaya Str., 220072, Minsk



T. G. Kaliaha
Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus
Belarus

Tatsiana G. Kaliaha - Junior Researcher.

27, Akademicheskaya Str., 220072, Minsk



E. A. Filipchik
Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus
Belarus

Elena A. Filipchik - Junior Researcher.

27, Akademicheskaya Str., 220072, Minsk



O. Y. Safonova
Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus
Belarus

Olga Y. Safonova - Junior Researcher.

27, Akademicheskaya Str., 220072, Minsk



N. V. Shalygo
Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus
Belarus

Nikolai V. Shalygo - Corresponding Member, D. Sc. (Biol.).

27, Akademi-cheskaya Str., 220072, Minsk



А. N. Grits
V.F. Kuprevich Institute of Experimental Botany, National Academy of Sciences of Belarus
Belarus

Aleksandr N. Grits - Researcher.

27, Akademicheskaya Str., 220072, Minsk



E. N. Karasiova
V.F. Kuprevich Institute of Experimental Botany, National Academy of Sciences of Belarus
Belarus

Elena N. Karasiova - Researcher.

27, Akademicheskaya Str., 220072, Minsk


T. B. Makarova
V.F. Kuprevich Institute of Experimental Botany, National Academy of Sciences of Belarus
Belarus

Tatsiana B. Makarova - Researcher.

27, Akademicheskaya Str., 220072, Minsk



K. I. Rybinskaya
V.F. Kuprevich Institute of Experimental Botany, National Academy of Sciences of Belarus
Belarus

Katsiarina I. Rybinskaya - Junior Researcher.

27, Akademicheskaya Str., 220072, Minsk



A. L. Olshanikova
V.F. Kuprevich Institute of Experimental Botany, National Academy of Sciences of Belarus
Belarus

Anna L. Olshanikova - Researcher.

27, Akademicheskaya Str., 220072, Minsk



T. G. Yanchevskaya
V.F. Kuprevich Institute of Experimental Botany, National Academy of Sciences of Belarus
Belarus

Tamara G. Yanchevskaya - Ph. D. (Biol.).

27, Akademicheskaya Str., 220072, Minsk



References

1. Yanchevskaya T. G. Physiological and biochemical optimisation of mineral nutrition ofplants. S. l., LAP LAMBERT Academic Publishing, 2018. 547 p. (in Russian).

2. Yanchevskaya Т. G., Grits A. N., Kolomiets E. I., Romanovskaya T. V., Yarullina L. G., Ibragimov R. I., Tsvetkov V. O. Stimulation of cellular mechanisms of potato antivirus resistance by the action of a preparation based on Bacillus subtilis bacteria. Applied Biochemistry and Microbiology, 2018, vol. 54, no. 3, pp. 324-330. https://doi.org/10.1134/S0003683818030158

3. Poliksenova V. D. Induced resistance of plants to pathogens and abiotic stress factors (on the example of tomato). Vestnik Belorusskogo gosudarstvennogo universiteta. Seriya 2. Khimiya. Biologiya. Geografiya [Bulletin of the Belarusian State University. Series 2. Chemistry. Biology. Geography], 2009, no. 1, pp. 48-60 (in Russian).

4. Choudhary D. K., Prakash A., Johri B. N. Induced systemic resistance (ISR) in plants: mechanism of action. Indian Journal of Microbiology, 2007, vol. 47, no. 4, pp. 289-297. https://doi.org/10.1007/s12088-007-0054-2

5. Romera F. J., Garda M. J., Lucena C., Martmez-Medina A., Aparicio M. A., Ramos J., Alcantara E., Angulo M., Perez-Vicente R. Induced Systemic Resistance (ISR) and Fe deficiency responses in dicot plants. Frontiers in Plant Science, 2019, vol. 10, art. 287. https://doi.org/10.3389/fpls.2019.00287

6. Pieterse C. M., Van der Does D., Zamioudis C., Leon-Reyes A., Van Wees S. C. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 2012, vol. 28, no. 1, pp. 489-521. https://doi.org/10.1146/annurev-cellbio-092910-154055

7. Denance N., Sanchez-Vallet A., Goffner D., Molina A. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science, 2013, vol. 4, art. 155. https://doi.org/10.3389/fpls.2013.00155

8. Pieterse C. M. J., Pierik R., van Wees S. C. M. Different shades of JAZ during plant growth and defense. New Phytologist, 2014, vol. 204, no. 2, pp. 261-264. https://doi.org/10.1111/nph.13029

9. Vasyukova N. I., Ozeretskovskaya O. L. Jasmonate-dependent defense signaling in plant tissues. Russian Journal of Plant Physiology, 2009, vol. 56, no. 5, pp. 581-590. https://doi.org/10.1134/S102144370905001X

10. Salazar L. F. Potato viruses and their control. Lima, Peru, Intern. Potato Center (CIP), 1996. 214 p.

11. Viazau Y. V., Radyuk M. S., Filipchik E. A., Shalygo N. V. PR-proteins as markers of winter wheat (Triticum aestivum L.) resistance to leaf pathogens. Vestsi Natsyyanal’nai akademii navukBelarusi. Seryya biyalagichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Biological series, 2019, vol. 64, no. 3, pp. 286-291 (in Russian).

12. Lee B. R., Kim K. Y., Jung W. J., Avice J. C., Ourry A., Kim T. H. Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). Journal of Experimental Botany, vol. 58, no. 6, pp. 1271-1279. https://doi.org/10.1093/jxb/erl280

13. Khasanov V. T., Muranets A. P., Orazbaeva G. K., Bukaev A. A. Inoculation, accumulation and identification of potato PVY virus in Nicotiana tabacum test plants. Vestnik nauki Kazakhskogo agrotekhnicheskogo universiteta imeni S. Seifullina [Science bulletin of S. Seifullin Kazakh Agrotechnical University], 2012, no. 4 (75), pp. 31-36 (in Russian).

14. Kozel N. V., Shalygo N. V. Barley leaf antioxidant system under photooxidative stress induced by Rose Bengal. Russian Journal of Plant Physiology, 2009, vol. 56, no. 3, pp. 316-322. https://doi.org/10.1134/S1021443709030030

15. Mohanty J. G., Jaffe J. S., Schulman E. S., Raible D. G. A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. Journal of Immunological Methods, 1997, vol. 202, no. 2, pp. 133-141. https://doi.org/10.1016/s0022-1759(96)00244-x

16. Gechev T., Willekens H., Van Montagu M., Inze D., Van Camp W., Toneva V., Minkov I. Different responses of tobacco antioxidant enzymes to light and chilling stress. Journal of Plant Physiology, 2003, vol. 160, no. 5, pp. 509-515. https://doi.org/10.1078/0176-1617-00753

17. Zaprometov M. N. Phenolic compounds: distribution, metabolism and functions in plants. Moscow, Nauka Publ., 1993. 272 p. (in Russian).

18. Mittler R., Zilinskas B. A. Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate dependent reduction of nitroblue tetrazolium. Analytical Biochemistry, 1993, vol. 212, no. 2, pp. 540-546. https://doi.org/10.1006/abio.1993.1366

19. Sanmartin M., Drogoudi P. A., Lyons T., Pateraki I., Barnes J., Kanellis A. K. Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta, 2003, vol. 216, pp. 918-928. https://doi.org/10.1007/s00425-002-0944-9

20. Kozel N. V. Photoooxidative processes induced in barley and tobacco plants by xanthene photosensitizers. Ph. D. Thesis. Minsk, 2009. 146 p.

21. Shalygo N. V., Shcherbakov R. A., Domanskaya I. N., Radyuk M. S. Spectrofluorometrical method of oxidized and reduced glutathione determination in plants. Fiziologiya i biokhimiya kulturnykh rastenii = Phisiology and biochemistry of cultivated plants, 2007, vol. 39, no. 3, pp. 264-270 (in Russian).

22. Bradford M. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, vol. 72, no. 1-2, pp. 248-254. https://doi.org/10.1006/abio.1976.9999

23. Domanskaya I. N., Radyuk M. S., Budakova Е. А., Samovich T. V., Spivak Е. А., Shalygo N. V. DNA typing technology for genes of barley resistance to drought: guidelines. Minsk, Pravo i ekonomika Publ., 2011. 31 p. (in Russian).

24. Pasalari Kh., Evtushenkov A. N. PR-genes expression in the lives of transgenic potato plants after glyphosate treatment. Vestnik Belorusskogo gosudarstvennogo universiteta. Seriya 2. Khimiya. Biologiya. Geografiya [Bulletin of the Belarusian State University. Series 2. Chemistry. Biology. Geography], 2016, no. 1, pp. 31-35 (in Russian).

25. Rokitskii P. F. Biological statistics. 3rd ed. Minsk, Vysheishaya shkola Publ., 1973. 318 p. (in Russian).

26. Artyukhov V. G., Nakvaskina M. A. Biological membranes: structural organization, functions, modification by physico-chemical agents. Voronezh, Publishing House of Voronezh State University, 2000. 294 p. (in Russian).

27. Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany, 2007, vol. 100, no. 4, pp. 681-697. https://doi.org/10.1093/aob/mcm079

28. Collen J., Herve C., Guisle-Marsollier I., Leger J. J., Boyen C. Expression profiling of Chondrus crispus (Rhodophyta) after exposure to methyl jasmonate. Journal of Experimental Botany, 2006, vol. 57, no. 14, pp. 3869-3881. https://doi.org/10.1093/jxb/erl171

29. Fung R. W. M., Wang C. Y., Smith D. L., Gross K. C., Tao Y., Tian M. Characterization of alternative oxidase (AOX) gene expression in response to methyl salicylate and methyl jasmonate pre-treatment and low temperature in tomatoes. Journal of Plant Physiology, vol. 163, no. 10, pp. 1049-60. https://doi.org/10.1016/jjplph.2005.11.003


Review

Views: 573


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)