Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Circular polymerase extension cloning of cDNA glucoamylase Aspergillus awamori into integrative vector for filamentous fungi

https://doi.org/10.29235/1029-8940-2020-65-3-319-327

Abstract

This article describes successful insertion the cDNA glucoamylase from Aspergillus awamori into the integrative vector for filamentous fungi pH4Hyg using the CPEC (circular polymerase extension cloning) strategy. The prior step was the PCR amplification of the cDNA glaA gene cloned into a vector based on the plasmid pBluescript II SK(-) and the amplification of linear pH4Hyg vector with promotor and terminator of the glaA gene. The PCR products were purified and used for CPEC reaction. The CPEC product was formed after 20 cycles of the reaction. It is proposed to use the final plasmid pH4HygPTgla in engineering of filamentous fungi strains producing stable forms of glucoamylase with biotechnological interest.

About the Authors

A. V. Kulik
Belarusian State University
Belarus

Alena V. Kulik - Ph. D. (Biol.), Leading Researcher, Belarusian State University.

4, Nezavisimosti Ave., 220030, Minsk.



Yu. V. Selezneva
Belarusian State University
Belarus

Yuliya V. Selezneva - Ph. D. (Biol.), Head of the Laboratory, Belarusian State University.

4, Nezavisimosti Ave., 220030, Minsk.



A. V. Kachan
Belarusian State University
Belarus

Alexandr V. Kachan - Ph. D. (Biol.), Assistant Professor, Belarusian State University.

4, Nezavisimosti Ave., 220030, Minsk.



O. B. Rus
Belarusian State University
Belarus

Olga B. Rus - Ph. D. (Chem.), Assistant Professor, Belarusian State University.

4, Nezavisimosti Ave., 220030, Minsk.



A. N. Evtushenkov
Belarusian State University
Belarus

Anatoliy N. Evtushenkov - D. Sc. (Biol.), Professor, Head of the Department, Belarusian State University.

4, Nezavisimosti Ave., 220030, Minsk.



References

1. Sauer J., Sigurskjold B. W., Christensen U., Frandsen T. P., Mirgorodskaya E., Harrison M., Roepstorff P., Svensson B. Glucoamylase: structure/function relationships, and protein engineering. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 2000, vol. 1543, no. 2, pp. 275-293. https://doi.org/10.1016/s0167-4838(00)00232-6

2. Marin-Navarro J., Polaina J. Glucoamylases: structural and biotechnological aspects. Applied Microbiology and Biotechnology, 2011, vol. 89, no. 5, pp. 1267-1273. https://doi.org/10.1007/s00253-010-3034-0

3. Gratcheva I. M., Krivova A. Yu. Enzyme technology. Moscow, Elevar Publ., 2000. 512 p. (in Russian).

4. Kumar P., Satyanarayana T. Microbial glucoamylases: characteristics and applications. Critical Reviews in Biotechnology, 2009, vol. 29, no. 3, pp. 225-255. https://doi.org/10.1080/07388550903136076

5. Coutinho P. M., Reilly P. J. Glucoamylase structural, functional, and evolutionary relationships. Proteins: Structure, Function, and Genetics, 1997, vol. 29, no. 3, pp. 334-347. https://doi.org/10.1002/(sici)1097-0134(199711)29:3334:aid-prot73.0.co;2-a

6. Gibson D. G., Young L., Chuang R.-Y., Venter J. C., Hutchison C. A., Smith H. O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 2009, vol. 6, no. 5, pp. 343-345. https://doi.org/10.1038/nmeth.1318

7. Gibson D. G., Glass J. I., Lartigue C., Noskov V. N., Chuang R. Y., Algire M. A. [et al.]. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, vol. 329, no. 5987, pp. 52-56. https://doi.org/10.1126/science.1190719

8. Schmid-Burgk J. L., Xie Z., Frank S., Winter S. V., Mitschka S., Kolanus W., Murray A., Benenson Y. Rapid hierarchical assembly of medium-size DNA cassettes. Nucleic Acids Research, 2012, vol. 40, no. 12, p. e92. https://doi.org/10.1093/nar/gks236

9. Datsenko K. A., Wanner B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences, 2000, vol. 97, no. 12, pp. 6640-6645. https://doi.org/10.1073/pnas.120163297

10. Watson J. F., Garcfa-Nafria J. In vivo DNA assembly using common laboratory bacteria: A re-emerging tool to simplify molecular cloning. Journal of Biological Chemistry, 2019, vol. 294, no. 42, pp. 15271-15281. https://doi.org/10.1074/jbc. rev119.009109

11. Walhout A. J. M., Temple G. F., Brasch M. A., Hartley J. L., Lorson M. A., van den Heuvel S., Vidal M. GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods in Enzymology. Vol. 328. Applications of Chimeric Genes and Hybrid Proteins - Part C: Protein-Protein Interactions and Genomics. New York, London, 2000, pp. 575-592. https://doi.org/10.1016/s0076-6879(00)28419-x

12. Quan J., Tian J. Circular polymerase extension cloning of complex gene libraries and pathways. PloS ONE, 2009, vol. 4, no. 7, p. e6441. https://doi.org/10.1371/journal.pone.0006441

13. Bryksin A. V., Matsumura I. Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques, 2010, vol. 48, no. 6, pp. 463-465. https://doi.org/10.2144/000113418

14. Zuo P., Rabie A. B. M. One-step DNA fragment assembly and circularization for gene cloning. Current Issues in Molecular Biology, 2009, vol. 12, no. 1, pp. 11-16.


Review

Views: 661


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)