Influence of elevated temperature on electron flows in chloroplasts of barley
https://doi.org/10.29235/1029-8940-2020-65-2-153-162
Abstract
The efficiency of electron carriers in thylakoid membranes untreated and exposed to heat 7-day-old barley seedlings was evaluated with PAM fluorescence. Darkness–light transitional states in chloroplasts after heat exposure are studied. Thermoinduced changes in linear and cyclic electron transport chain of chloroplasts are revealed. The activation of NADPH-dependent electron flux after exposure to elevated temperatures is shown. We assumed that ΔрН of thylakoid membranes employed the regulatory role in the distribution of electron flows and the adaptation of the photosynthetic apparatus to stressful effects.
About the Authors
N. L. PshybytkoBelarus
Natallia L. Pshybytko – Ph. D. (Biol.), Leading researcher
4, Nezavisimosti Ave., 220030, Minsk
T. S. Bachyshcha
Belarus
Tatsiana S. Bachyshcha – Junior researcher
27, Akademicheskaya Str., 220072, Minsk
L. F. Kabashnikova
Belarus
Liudmila F. Kabashnikova – Corresponding Member, D. Sc. (Biol.), Assistant Professor, Head of the Laboratory
27, Akademicheskaya Str., 220072, Minsk
References
1. He M., He Ch.-Q., Ding N.-Zh. Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Frontiers in Plant Science, 2018, vol. 9, art. 1771. https://doi.org/10.3389/fpls.2018.01771
2. Nguyen H.-Ch., Lin K.-H., Ho Sh.-L., Chiang Ch.-M., Yang Ch.-M. Enhancing the abiotic stress tolerance of plants: from chemical treatment to biotechnological approaches. Physiologia Plantarum, 2018, vol. 164, no. 4, pp. 452–466. https://doi.org/10.1111/ppl.12812
3. Kamrun N., Hasanuzzaman M., Uddin Ahamed K., Rehman Hakeem Kh., Ozturk M., Fujita M. Plant responses and tolerance to high temperature stress: role of exogenous phytoprotectants. Crop production and global environmental issues. Cham, 2015, pp. 385–435.
4. Carpentier R. Effect of high-temperature stress on the photosynthetic apparatus. Books in soils, plants, and the environment. New York, 1999, pp. 337–348.
5. Derks A., Schaven K., Bruce D. Diverse mechanisms for photoprotection in photosynthesis. Dinamic regulation of photosystem II excitation in response to rapin environmental change. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 2015, vol. 1847, no. 4–5, pp. 468–485. https://doi.org/10.1016/j.bbabio.2015.02.008
6. Wientjes E., Drop B., Kouřil R., Boekema E. J., Croce R. During state 1 to state 2 transition in arabidopsis thaliana, the Photosystem II supercomplex gets phosphorylated but does not disassemble. Journal of Biological Chemistry, 2013, vol. 288, no. 46, pp. 32821–32826. https://doi.org/10.1074/jbc.m113.511691
7. Nagy G., Ünnep R., Zsiros O., Tokutsu R., Takizawa K., Porcar L. [et al.]. Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo. Proceedings of the National Academy of Sciences, 2014, vol. 111, no. 13, pp. 5042–5047. https://doi.org/10.1073/pnas.1322494111
8. Nikkanen L., Rintamäki E. Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants. Biochemical Journal, 2019, vol. 476, no. 7, pp. 1159–1172. https://doi.org/10.1042/bcj20180707
9. Luo T., Fan T., Liu Y., Rothbart M., Yu J., Zhou S., Grimm B., Luo M. Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox-mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants. Plant Physiology, 2012, vol. 159, no. 1, pp. 118–130. https://doi.org/10.1104/pp.112.195446
10. Portis A. R., Li C., Wang D., Salvucci M. E. Regulation of Rubisco activase and its interaction with Rubisco. Journal of Experimental Botany, 2007, vol. 59, no. 7, pp. 1597–1604. https://doi.org/10.1093/jxb/erm240
11. Krause G. H., Weis E. Chlorophyll fluorescence and photosynthesis: The basics. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, vol. 42, no. 1, pp. 313–349. https://doi.org/10.1146/annurev.arplant.42.1.313
12. Pfündel E., Klughammer Ch., Schreiber U. Monitoring the effects of reduced PS II antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system. PAM Application Notes, 2008, vol. 1, pp. 21–24.
13. Robinson H. H., Sharp R. R., Yocum C. F. Effect of manganese on the nuclear magnetic relaxivity of water protons in chloroplast suspensions. Biochemical and Biophysical Research Communications, 1980, vol. 93, no. 3, pp. 755–761. https://doi.org/10.1016/0006-291x(80)91141-9
14. Gavrilenko V. F., Ladygina M. E., Khandobina L. M. Great workshop on plant physiology. Photosynthesis. Respiration. Moscow, Vysshaya shkola Publ., 1975. 392 p. (in Russian).
15. Lowry O. H., Lopez J. A. The determination of inorganic phosphate in the presence of labile phosphate esters. Journal of Biological Chemistry, 1946, vol. 162, pp. 421–428.
16. Pinton R., Cakmak I., Marschner H. Zinc deficiency enhanced NAD(P)H-dependent superoxide radical production in plasma membrane vesicles isolated from roots of bean plants. Journal of Experimental Botany, 1994, vol. 45, no. 1, pp. 45–50. https://doi.org/10.1093/jxb/45.1.45
17. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 1951, vol. 193, no. 1, pp. 265–275.
18. Karapetyan N. V., Bukhov N. G. Variable chlorophyll fluorescence as an indicator of the physiological state of plants. Fiziologiya rastenii [Plant physiology], 1986, vol. 33, no. 5, pp. 1013–1026 (in Russian).
19. Snellenburga J. J., Johnson M. P., Ruban A. V., van Grondelle R., van Stokkum I. H. M. A four state parametric model for the kinetics of the non-photochemical quenching in Photosystem II. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 2017, vol. 1858, no. 10, pp. 854–864. https://doi.org/10.1016/j.bbabio.2017.08.004
20. Tian L., Nawrocki W. J., Liu X., Polukhina I., van Stokkum I. H. M., Croce R. pH dependence, kinetics and light-harvesting regulation of nonphotochemical quenching in Chlamydomonas. Proceedings of the National Academy of Sciences, 2019, vol. 116, no. 17, pp. 8320–8325. https://doi.org/10.1073/pnas.1817796116
21. Ruban A. V., Johnson M. P., Duffy Ch. D. P. The photoprotective molecular switch in the photosystem II antenna. Biochimica et Biophysica Acta, 2012, vol. 1817, no. 1, pp. 167–181. https://doi.org/10.1016/j.bbabio.2011.04.007
22. Miyake Ch. Alternative electron flows (water–water cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions. Plant and Cell Physiology, 2010, vol. 51, no. 12, pp. 1951–1963. https://doi.org/10.1093/pcp/pcq173
23. Bukhov N., Carpentier R. Alternative photosystem I-driven electron transport routes: mechanisms and functions. Photosynthesis Research, 2004, vol. 82, no. 1, pp. 17–33. https://doi.org/10.1023/b:pres.0000040442.59311.72
24. Mulo P. Chloroplast-targeted ferredoxin-NADP+ oxidoreductase: structure, function and location. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 2011, vol. 1807, no. 8, pp. 927–934. https://doi.org/10.1016/j.bbabio.2010.10.001
25. Savitch L. V., Ivanov A. G., Gudynaite-Savitch L., Huner N. P. A. Simmonds J. Cold stress effect on PSI photochemistry in Zea mays: differential increase of FQR-dependent cyclic electron flow and functional implications. Plant and Cell Physiology, 2011, vol. 52, no. 6, pp. 1042–1054. https://doi.org/10.1093/pcp/pcr056
26. Essemine J., Govindachary S., Ammar S., Bouzid S., Carpentier R. Abolition of photosystem I cyclic electron flow in Arabidopsis thaliana following thermal-stress. Plant Physiology and Biochemistry, 2011, vol. 49, no. 3, pp. 235–243. https://doi.org/10.1016/j.plaphy.2010.11.002
27. Pshybytko N., Kruk J., Kabashnikova L., Strzalka K. Function of plastoquinone in heat stress reactions of plants. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 2008, vol. 1777, no. 11, pp. 1393–1399. https://doi.org/10.1016/j.bbabio. 2008.08.005
28. Munekage Y., Hashimoto M., Miyake C., Tomizawa K.-I., Endo T., Tasaka M., Shikanai T. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature, 2004, vol. 429, no. 6991, pp. 579–582. https://doi.org/10.1038/nature02598
29. Joly D., Carpentier R. Regulation of energy dissipation in photosystem I by the redox state of the plastoquinone pool. Biochemistry, 2007, vol. 46, no. 18, pp. 5534–5541. https://doi.org/10.1021/bi602627d
30. Joliot P., Joliot A. Cyclic electron transfer in plant leaf. Proceedings of the National Academy of Sciences, 2002, vol. 99, no. 15, pp. 10209–10214. https://doi.org/10.1073/pnas.102306999