Hybride metall-organic nanoflowers and their applications in biotechnology
https://doi.org/10.29235/1029-8940-2019-64-3-374-384
Abstract
Among the variety of modern nanomaterials a special class – nanoflowers can be distinguished. These new nanostructures have induced the interest of scientists due to the topographic features of nanolayers, the special location of which allows a higher surface-to-volume ratio compared to classical spherical nanoparticles. Such topographic structure significantly increases the efficiency of surface reactions for nanoflowers. The main purpose of this type of nanomaterials is their use as enzyme stabilizers. Enzymes are biosystems with high activity and substrate specificity, but their use is limited by certain disadvantages, such as high sensitivity to the environment, low reproducibility of experimental results and requirements for complex purification of the components. To facilitate the functioning of enzymes in various conditions, organicinorganic hybrid nanomaterials have been developed, the name of which indicates that all components of inorganic nanoparticles are associated with organic materials. These nanoparticles have numerous promising applications in catalysis, as biosensors, and for drug delivery. Organic-inorganic hybrid nanoflowers have led to the development of a new branch of chemistry – the chemistry of hybrid nanomaterials, whose research is currently undergoing rapid development. Thus, the study of organic-inorganic hybrid nanocrystals can lead to new creative solutions in the field of chemistry of enzyme systems and the rapid development of bionanomaterials and new branches of biotechnology.
About the Authors
V. M. AbashkinBelarus
Viktar М. Abashkin – Junior researcher
27, Akademicheskaya Str., 220072, Minsk, Republic of Belarus
I. V. Halets-Bu
Belarus
Inessa V. Halets-Bui – Ph. D. (Biol), Researcher
27, Akademicheskaya Str., 220072, Minsk, Republic of Belarus
V. G. Dzmitruk
Belarus
Volha G. Dzmitruk – Ph. D. (Biol.), Leading researcher
27, Akademicheskaya Str., 220072, Minsk, Republic of Belarus
M. Bryszewska
Poland
Maria Bryszewska – D. Sc. (Biol.), Professor, Head of the Department
141/143, Pomorska Str., 90-236, Lodz, Poland
D. G. Shcharbin
Belarus
Dzmitry G. Shcharbin – D. Sc. (Biol.), Professor, Head of the Laboratory
27, Akademicheskaya Str., 220072, Minsk, Republic of Belarus
M. Odabaşı
Turkey
Mehmet Odabaşı – D. Sc. (Chem.), Professor, Head of the Department
68100, Aksaray, Turkey
Ö. Acet
Turkey
Ömür Acet – Postgraduate student
68100, Aksaray, Turkey
B. Önal
Turkey
Burcu Önal – Postgraduate student
68100, Aksaray, Turkey
N. Özdemir
Turkey
Nalan Özdemir – D. Sc. (Chem.), Professor
Yenidoğan Mahallesi Turhan Baytop Sokak No. 1, 38280, Talas, Kayseri, Turkey
References
1. Kouassi G. K., Irudayaraj J., McCarty G. Examination of cholesterol oxidase attachment to magnetic nanoparticles. Journal of Nanobiotechnology, 2005, vol. 3, no. 1, p. 1. https://doi.org/10.1186/1477-3155-3-1
2. Prakasham R. S., Devi G. S., Rao C. S., Sivakumar V. S., Sathish T., Sarma P. N. Nickelimpregnated silica nanoparticle synthesis and their evaluation for biocatalyst immobilization. Applied Biochemistry and Biotechnology, 2010, vol. 160, no. 7, pp. 1888–1895. https://doi.org/10.1007/s12010-009-8726-5
3. Ding H., Wen L., Chen J. Porous silica nano-tube as host for enzyme immobilization. China Particuology, 2004, vol. 2, no. 6, pp. 270–273. https://doi.org/10.1016/S1672-2515(07)60073-6
4. Ansari S. A., Husain Q. Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnology Advances, 2012, vol. 30, no. 3, pp. 512–523. https://doi.org/10.1016/j.biotechadv.2011.09.005
5. Wang R., Tian Z., Chen L. Nano-encapsulations liberated from barley protein microparticles for oral delivery of bioactive compounds.International Journal of Pharmaceutics, 2011, vol. 406, no. 1–2, pp. 153–162. https://doi.org/10.1016/j.ijpharm.2010.12.039
6. Kumar P. S., Ramakrishna S., Saini T. R., Diwan P. V. Influence of microencapsulation method and peptide loading on formulation of poly(lactide-coglycolide) insulin nanoparticles. Pharmazie, 2006, vol. 61, no. 7, pp. 613–617.
7. Wanakule P., Liu G. W., Fleury A. T., Roy K. Nano-inside-micro: disease-responsive microgels with encapsulated nanoparticles for intracellular drug delivery to the deep lung. Journal of Controlled Release, 2012, vol. 162, no. 2, pp. 429–437. https://doi.org/10.1016/j.jconrel.2012.07.026
8. Kim J.-K., Anderson J., Jun H.-W., Repka M. A., Jo S. Self-assembling peptide amphiphile-based nanofiber gel for bioresponsive cisplatin delivery. Molecular Pharmaceutics, 2009, vol. 6, no. 3, pp. 978–985. https://doi.org/10.1021/mp900009n
9. Njagi J., Andreescu S. Stable enzyme biosensors based on chemically synthesized Au-polypyrrole nanocomposites. Biosensors and Bioelectronics, 2007, vol. 23, no. 2, pp. 168–175. https://doi.org/10.1016/j.bios.2007.03.028
10. Lin J., Qu W., Zhang S. Disposable biosensor based on enzyme immobilized on Au-chitosan-modified indium tin oxide electrode with flow injection amperometric analysis. Analytical Biochemistry, 2007, vol. 360, no. 2, pp. 288–293. https:// doi.org/10.1016/j.ab.2006.10.030
11. Zhang Y. W., Zhang Y., Wang H., Yan B., Shen G. L., Yu R. Q. An enzyme immobilization platform for biosensor designs of direct electrochemistry using flower-like ZnO crystals and nano-sized gold particles. Journal of Electroanalytical Chemistry, 2009, vol. 627, no. 1–2, pp. 9–14. https://doi.org/10.1016/j.jelechem.2008.12.010
12. Takhistov P. Electrochemical synthesis and impedance characterization of nano-patterned biosensor substrate. Biosensors and Bioelectronics, 2004, vol. 19, no. 11, pp. 1445–1456. https://doi.org/10.1016/j.bios.2003.08.015
13. Sassolas A., Blum L. J., Leca-Bouvier B. D. Immobilization strategies to develop enzymatic biosensors. Biotechnology Advances, 2012, vol. 30, no. 3, pp. 489–511. https://doi.org/10.1016/j.biotechadv.2011.09.003
14. Datta S., Christena L.R., Rajaram Y. R. S. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 2013, vol. 3, no. 1, pp. 1–9. https://doi.org/10.1007/s13205-012-0071-7
15. Kim J., Grate J. W., Wang P. Nanobiocatalysis and its potential applications. Trends in Biotechnology, 2008, vol. 26, no. 11, pp. 639–646. https://doi.org/10.1016/j.tibtech.2008.07.009
16. Ge J., Lu D. N., Liu Z. X., Liu Z. Recent advances in nanostructured biocatalysts. Biochemical Engineering Journal, 2009, vol. 44, no. 1, pp. 53–59. https://doi.org/10.1016/j.bej.2009.01.002
17. Luckarift H. R., Spain J. C., Naik R. R., Stone M. O. Enzyme immobilization in a biomimetic silica support. Nature Biotechnology, 2004, vol. 22, no. 2, pp. 211–213. https://doi.org/10.1038/nbt931
18. Mateo C., Grazu V., Palomo J. M., Lopez-Gallego F., Fernandez-Lafuente R., Guisan J. M. Immobilization of enzymes on heterofunctional epoxy supports. Nature Protocols, 2007, vol. 2, no. 5, pp. 1022–1033. https://doi.org/10.1038/nprot.2007.133
19. Lei C., Shin Y., Liu J., Ackerman E. J. Entrapping enzyme in a functionalized nanoporous support. Journal of the American Chemical Society, 2002, vol. 124, no. 38, pp. 11242–11243. https://doi.org/10.1021/ja026855o
20. Dulay M. T., Baca Q. J., Zare R. N. Enhanced proteolytic activity of covalently bound enzymes in photopolymerized sol gel. Analytical Chemystry, 2005, vol. 77, no. 14, pp. 4604–4610. https://doi.org/10.1021/ac0504767
21. Ge J., Lei J., Zare R. N. Protein–inorganic hybrid nanoflowers. Nature Nanotechnology, 2012, vol. 7, no. 7, pp. 428–432. https://doi.org/10.1038/nnano.2012.80
22. Zhu L., Gong L., Zhang Y., Wang R., Ge J., Liu Z., Zare R. N. Rapid detection of phenol using a membrane containing laccase nanoflowers.Chemistry – an Asian Journal, 2013, vol. 8, no. 10, pp. 2358–2360. https://doi.org/10.1002/asia.201300020
23. Sun J., Ge J., Liu W., Lan M., Zhang H., Wang P. Multi-enzyme coembedded organic–inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor. Nanoscale, 2014, vol. 6, no. 1, pp. 255–262. https://doi.org/10.1039/C3NR04425D
24. Lin Z., Xiao Y., Wang L., Yin Y., Zheng J., Yang H. Facile synthesis of enzyme-inorganic hybrid nanoflowers and their application as an immobilized trypsin reactor for highly efficient protein digestion. RSC Advances, 2014, vol. 4, no. 27, pp. 13888–13891. https://doi.org/10.1039/C4RA00268G
25. Lin Z., Xiao Y., Yin Y., Hu W., Liu W., Yang H. Facile synthesis of enzyme–inorganic hybrid nanoflowers and its application as a colorimetric platform for visual detection of hydrogen peroxide and phenol. ACS Applied Materials and Interfaces, 2014, vol. 6, no. 13, pp. 10775–10782. https://doi.org/10.1021/am502757e
26. Manesh K. M., Santhosh P., Uthayakumar S., Gopalan A. I., Lee K.-P. One-pot construction of mediatorless bi-enzymatic glucose biosensor based on organic–inorganic hybrid. Biosensors and Bioelectronics, 2010, vol. 25, no. 7, pp. 1579–1586. https://doi.org/10.1016/j.bios.2009.11.015
27. Delaittre G., Reynhout I. C., Cornelissen J. J., Nolte R. J. Cascade reactions in an all-enzyme nanoreactor. Chemistry – a European Journal, 2009, vol. 15, no. 46, pp. 12600–12603. https://doi.org/10.1002/chem.200902063
28. Fan Z., Wagschal K., Chen W., Montross M. D., Lee C. C., Yuan L. Multimeric hemicellulases facilitate biomass conversion. Applied and Environmental Microbiology, 2009, vol. 75, no. 6, pp. 1754–1757. https://doi.org/10.1128/AEM.02181-08
29. Hirakawa H., Kamiya N., Tanaka T., Nagamune T. Intramolecular electron transfer in a cytochrome P450cam system with a site-specific branched structure. Protein Engineering Design and Selection, 2007, vol. 20, no. 9, pp. 453–459. https://doi.org/10.1093/protein/gzm045
30. Wang L. B., Wang Y. C., He R., Zhuang A., Wang X., Zeng J. A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance. Journal of the American Chemical Society, 2013, vol. 135, no. 4, pp. 1272–1275. https://doi.org/10.1021/ja3120136
31. Wang X., Shi J., Li Z., Zhang S., Wu H., Jiang Z. Facile one-pot preparation of chitosan/calcium pyrophosphate hybrid microflowers. ACS Applied Materials Interfaces, 2014, vol. 6, no. 16, pp. 14522–14532. https://doi.org/10.1021/am503787h
32. Zhang Z., Zhang Y., Song R., Wang M., Yan F., He L. Manganese(II) phosphate nanoflowers as electrochemical biosensors for the high-sensitivity detection of ractopamine. Sensors and Actuators B: Chemical, 2015, vol. 211, pp. 310–317. https://doi.org/10.1016/j.snb.2015.01.106
33. Blanca J., Munoz P., Morgado M., Mendez N., Aranda A., Reuvers T., Determination of clenbuterol, ractopamine and zilpaterol in liver and urine by liquid chromatography tandem mass spectrometry. Analytica Chimica Acta, 2005, vol. 529, no. 1–2, pp. 199–205. https://doi.org/10.1016/j.aca.2004.09.061
34. Shishani E., Chai S. C., Jamokha S., Aznar G., Hoffman M. K. Determination of ractopamine in animal tissues by liquid chromatography-fluorescence and liquid chromatography/tandem mass spectrometry. Analytica Chimica Acta, 2003, vol. 483, no. 1–2, pp. 137–145. https://doi.org/10.1016/S0003-2670(03)00120-X
35. He L., Su Y., Zeng Z., Liu Y., Huang X. Determination of ractopamine and clenbuterol in feeds by gas chromatography– mass spectrometry.Animal Feed Science and Technology, 2007, vol. 132, no. 3–4, pp. 316–323. https://doi.org/10.1016/j.anifeedsci.2006.03.013
36. Shelver W. L., Smith D. J. Determination of ractopamine in cattle and sheep urine samples using an optical biosensor analysis: comparative study with HPLC and ELISA. Journal of Agricultural and Food Chemistry, 2003, vol. 51, no. 13, pp. 3715–3721. https://doi.org/10.1021/jf021175q
37. Liu M., Ning B. A., Qu L. J., Peng Y., Dong J. W., Gao N. Development of indirect competitive immunoassay for highly sensitive determination of ractopamine in pork liver samples based on surface plasmon resonance sensor. Sensors and Actuators B: Chemical, 2012, vol. 161, no. 1, pp. 124–130. https://doi.org/10.1016/j.snb.2011.09.078
38. Wu C., Sun D., Li Q., Wu K. B. Electrochemical sensor for toxic ractopamine and clenbuterol based on the enhancement effect of graphene oxide. Sensors and Actuators B: Chemical, 2012, vol. 168, pp. 178–184. https://doi. org/10.1016/j.snb.2012.03.084
39. Duan J. H., He D. W., Wang W. S., Liu Y. C., Wu H. P., Wang Y. S. Glassy carbon electrode modified with gold nanoparticles for ractopamine and metaproterenol sensing. Chemical Physics Letters, 2013, vol. 574, pp. 83–88. https://doi.org/10.1016/j.cplett.2013.04.057
40. Jin W., Yang G., Shao H., Qin A. A label-free impedimetric immunosensor for detection of 1-aminohydantoin residue in food samples based on sol–gel embedding antibody. Food Control, 2014, vol. 39, pp. 185–191. https://doi.org/10.1016/j.foodcont.2013.11.001
41. Hu R., Zhang X., Zhao Z., Zhu G., Chen T., Fu T. DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery.Angewandte Chemie, 2014, vol. 53, no. 23, pp. 5821–5826. https://doi.org/10.1002/ange.201400323
42. Shi J. F., Zhang S. H., Wang X. L., Yang C., Jiang Z. Y. Preparation and enzymatic application of flower-like hybrid microcapsules through a biomimetic mineralization approach. Journal of Materials Chemistry B, 2014, vol. 2, no. 27, pp. 4289–4296. https://doi.org/10.1039/C4TB00507D
43. Li J., Jiang Z. Y., Wu H., Zhang L., Long L. H., Jiang Y. J. Constructing inorganic shell onto LBL microcapsule through biomimetic mineralization: a novel and facile method for fabrication of microbioreactors. Soft Matter, 2010, vol. 6, no. 3, pp. 542–550. https://doi.org/10.1039/B918218G
44. Klajnert B., Walach W., Bryszewska M., Dworak A., Shcharbin D. Cytotoxicity, haematotoxicity and genotoxicity of high molecular arborescent polyoxyethylene with polyglycidol block containing shell. Cell Biology International, 2006, vol. 30, no. 3, pp. 248–252. https://doi.org/10.1016/j.cellbi.2005.10.026
45. Dzmitruk V., Szulc A., Shcharbin D., Janaszewska A., Shcharbina N., Lazniewska J. [et al.]. Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (B). Efficiency of pharmacological action. International Journal of Pharmaceutics, 2015, vol. 485, no. 1–2, pp. 288–294. https://doi.org/10.1016/j.ijpharm.2015.03.034
46. Shcharbin D., Shakhbazau A., Bryszewska M. Poly(amidoamine) dendrimer complexes as a platform for gene delivery. Expert Opinion on Drug Delivery, 2013, vol. 10, no. 12, pp. 1687–1698. https://doi.org/10.1517/17425247.2013.853661
47. Dzmitruk V., Apartsin E., Ihnatsyeu-Kachan A., Abashkin V., Shcharbin D., Bryszewska M. Dendrimers show рromise for siRNA and microRNA therapeutics. Pharmaceutics, 2018, vol. 10, no. 3, p. 126. https://doi.org/10.3390/ pharmaceutics10030126
48. Shcharbin D., Shcharbina N., Dzmitruk V., Pedziwiatr-Werbicka E., Ionov M., Mignani S., [et al.]. Dendrimer-protein interactions versus dendrimer-based nanomedicine. Colloids and Surfaces B: Biointerfaces, 2017, vol. 152, pp. 414–422. https://doi.org/10.1016/j.colsurfb.2017.01.041