Preview

Известия Национальной академии наук Беларуси. Серия биологических наук

Пашыраны пошук

Гибридные металл-органические наноцветы и их применение в биотехнологии

https://doi.org/10.29235/1029-8940-2019-64-3-374-384

Анатацыя

Среди всего разнообразия современных наноматериалов можно выделить особый класс – наноцветы. Интерес ученых к данным наноструктурам обусловлен наличием у последних специфической топографии нанослоев, особое расположение которых позволяет получить значительно большее отношение площади поверхности к объему, чем у классических сферических наночастиц, что существенно увеличивает эффективность реакций на поверхности наноцветов. Основной способ применения наноцветов – использование их в качестве стабилизаторов ферментов. Последние представляют собой биосистемы с высокой активностью и субстратной специфичностью, но их использование ограничено высокой чувствительностью к среде, низкой воспроизводимостью экспериментальных результатов и наличием требований к комплексной очистке составляющих. Чтобы улучшить функционирование ферментов в различных условиях, разработаны органико-неорганические гибридные наноматериалы (название отражает связь неорганических компонентов в наночастицах с органическими материалами). Указанные наночастицы могут быть использованы в катализе, в качестве биосенсоров, а также для доставки лекарств. Это дало толчок развитию новой отрасли химии – химии гибридных наноматериалов, бурно развивающейся в настоящее время. Таким образом, изучение органико-неорганических гибридных нанокристаллов в области химии ферментных систем будет способствовать быстрому развитию бионаноматериалов и новых отраслей биотехнологии.

Аб аўтарах

В. Абашкин
Институт биофизики и клеточной инженерии НАН Беларуси
Беларусь


И. Галец-Буй
Институт биофизики и клеточной инженерии НАН Беларуси
Беларусь


О. Дмитрук
Институт биофизики и клеточной инженерии НАН Беларуси
Беларусь


М. Брышевска
Лодзьский университет
Польша


Д. Щербин
Институт биофизики и клеточной инженерии НАН Беларуси
Беларусь


М. Одабаши
Университет Аксарай
Турцыя


О. Ацет
Университет Аксарай
Турцыя


Б. Онал
Университет Аксарай
Турцыя


Н. Оздемир
Университет Эрцийе
Турцыя


Спіс літаратуры

1. Kouassi, G. K. Examination of cholesterol oxidase attachment to magnetic nanoparticles / G. K. Kouassi, J. Irudayaraj, G. McCarty // J. Nanobiotechnol. – 2005. – Vol. 3, N 1. – P. 1. https://doi.org/10.1186/1477-3155-3-1

2. Nickelimpregnated silica nanoparticle synthesis and their evaluation for biocatalyst immobilization / R. S. Prakasham [et al.] // Appl. Biochem. Biotechnol. – 2010. – Vol. 160, N 7. – P. 1888–1895. https://doi.org/10.1007/s12010-009-8726-5

3. Ding, H. Porous silica nano-tube as host for enzyme immobilization / H. Ding, L. Wen, J. Chen // China Particuol. – 2004. – Vol. 2, N 6. – P. 270–273. https://doi.org/10.1016/S1672-2515(07)60073-6

4. Ansari, S. A. Potential applications of enzymes immobilized on/in nano materials: a review / S. A. Ansari, Q. Husain // Biotechnol. Adv. – 2012. – Vol. 30, N 3. – P. 512–523. https://doi.org/10.1016/j.biotechadv.2011.09.005

5. Wang, R. Nano-encapsulations liberated from barley protein microparticles for oral delivery of bioactive compounds / R. Wang, Z. Tian, L. Chen // Int. J. Pharm. – 2011. – Vol. 406, N 1–2. – P. 153–162. https://doi.org/10.1016/j.ijpharm.2010.12.039

6. Influence of microencapsulation method and peptide loading on formulation of poly(lactide-coglycolide) insulin nanoparticles / P. S. Kumar [et al.] // Pharmazie. – 2006. – Vol. 61, N 7. – P. 613–617.

7. Nano-inside-micro: disease-responsive microgels with encapsulated nanoparticles for intracellular drug delivery to the deep lung / P. Wanakule [et al.] // J. Control. Release. – 2012. – Vol. 162, N 2. – P. 429–437. https://doi.org/10.1016/j.jconrel.2012.07.026

8. Self-assembling peptide amphiphile-based nanofiber gel for bioresponsive cisplatin delivery / J.-K. Kim [et al.] // Mol. Pharm. – 2009. – Vol. 6, N 3. – P. 978–985. https://doi.org/10.1021/mp900009n

9. Njagi, J. Stable enzyme biosensors based on chemically synthesized Au-polypyrrole nanocomposites / J. Njagi, S. Andreescu // Biosens Bioelectron. – 2007. – Vol. 23, N 2. – P. 168–175. https://doi.org/10.1016/j.bios.2007.03.028

10. Lin, J. Disposable biosensor based on enzyme immobilized on Au-chitosan-modified indium tin oxide electrode with flow injection amperometric analysis / J. Lin, W. Qu, S. Zhang // Anal. Biochem. – 2007. – Vol. 360, N 2. – P. 288–293. https:// doi.org/10.1016/j.ab.2006.10.030

11. An enzyme immobilization platform for biosensor designs of direct electrochemistry using flower-like ZnO crystals and nano-sized gold particles / Y. W. Zhang [et al.] // J. Electroanal. Chem. – 2009. – Vol. 627, N 1–2. – P. 9–14. https://doi.org/10.1016/j.jelechem.2008.12.010

12. Takhistov, P. Electrochemical synthesis and impedance characterization of nano-patterned biosensor substrate / P. Takhistov // Biosens. Bioelectron. – 2004. – Vol. 19, N 11. – P. 1445–1456. https://doi.org/10.1016/j.bios.2003.08.015

13. Sassolas, A. Immobilization strategies to develop enzymatic biosensors / A. Sassolas, L. J. Blum, B. D. Leca-Bouvier // Biotechnol. Adv. – 2012. – Vol. 30, N 3. – P. 489–511. https://doi.org/10.1016/j.biotechadv.2011.09.003

14. Datta, S. Enzyme immobilization: an overview on techniques and support materials / S. Datta, L. R. Christena, Y. R. S. Rajaram // 3 Biotech. – 2013. – Vol. 3, N 1. – P. 1–9. https://doi.org/10.1007/s13205-012-0071-7

15. Kim, J. Nanobiocatalysis and its potential applications / J. Kim, J. W. Grate, P. Wang // Trend Biotechnol. – 2008. – Vol. 26, N 11. – P. 639–646. https://doi.org/10.1016/j.tibtech.2008.07.009

16. Recent advances in nanostructured biocatalysts / J. Ge [et al.] // Biochem. Eng. J. – 2009. – Vol. 44, N 1. – P. 53–59. https://doi.org/10.1016/j.bej.2009.01.002

17. Enzyme immobilization in a biomimetic silica support / H. R. Luckarift [et al.] // Nat. Biotechnol. – 2004. – Vol. 22, N 2. – P. 211–213. https://doi.org/10.1038/nbt931

18. Immobilization of enzymes on heterofunctional epoxy supports / C. Mateo [et al.] // Nat. Protoc. – 2007. – Vol. 2, N 5. – P. 1022–1033. https://doi.org/10.1038/nprot.2007.133

19. Entrapping enzyme in a functionalized nanoporous support / C. Lei [et al.] // J. Am. Chem. Soc. – 2002. – Vol. 124, N 38. – P. 11242–11243. https://doi.org/10.1021/ja026855o

20. Dulay, M. T. Enhanced proteolytic activity of covalently bound enzymes in photopolymerized sol gel / M. T. Dulay, Q. J. Baca, R. N. Zare // Anal. Chem. – 2005. – Vol. 77, N 14. – P. 4604–4610. https://doi.org/10.1021/ac0504767

21. Ge, J. Protein–inorganic hybrid nanoflowers / J. Ge, J. Lei, R. N. Zare // Nat. Nanotechnol. – 2012. – Vol. 7, N 7. – P. 428–432. https://doi.org/10.1038/nnano.2012.80

22. Rapid detection of phenol using a membrane containing laccase nanoflowers / L. Zhu [et al.] // Chem. Asian J. – 2013. – Vol. 8, N 10. – P. 2358–2360. https://doi.org/10.1002/asia.201300020

23. Multi-enzyme coembedded organic–inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor / J. Sun [et al.] // Nanoscale. – 2014. – Vol. 6, N 1. – P. 255–262. https://doi.org/10.1039/C3NR04425D

24. Facile synthesis of enzyme-inorganic hybrid nanoflowers and their application as an immobilized trypsin reactor for highly efficient protein digestion / Z. Lin [et al.] // RSC Adv. – 2014. – Vol. 4, N 27. – P. 13888–13891. https://doi.org/10.1039/ C4RA00268G

25. Facile synthesis of enzyme–inorganic hybrid nanoflowers and its application as a colorimetric platform for visual detection of hydrogen peroxide and phenol / Z. Lin [et al.] // ACS Appl. Mater. Interf. – 2014. – Vol. 6, N 13. – P. 10775–10782. https://doi.org/10.1021/am502757e

26. One-pot construction of mediatorless bi-enzymatic glucose biosensor based on organic–inorganic hybrid / K. M. Manesh [et al.] // Biosens Bioelectron. – 2010. – Vol. 25, N 7. – P. 1579–1586. https://doi.org/10.1016/j.bios.2009.11.015

27. Cascade reactions in an all-enzyme nanoreactor / G. Delaittre [et al.] // Chem. Eur. J. – 2009. – Vol. 15, N 46. – P. 12600–12603. https://doi.org/10.1002/chem.200902063

28. Multimeric hemicellulases facilitate biomass conversion / Z. Fan [et al.] // Appl. Environ. Microbiol. – 2009. – Vol. 75, N 6. – P. 1754–1757. https://doi.org/10.1128/AEM.02181-08

29. Intramolecular electron transfer in a cytochrome P450cam system with a site-specific branched structure / H. Hirakawa [et al.] // Protein Eng. Des. Sel. – 2007. – Vol. 20, N 9. – P. 453–459. https://doi.org/10.1093/protein/gzm045

30. A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance / L. B. Wang [et al.] // J. Am. Chem. Soc. – 2013. – Vol 135, N 4. – P. 1272–1275. https://doi.org/10.1021/ja3120136

31. Facile one-pot preparation of chitosan/calcium pyrophosphate hybrid microflowers / X. Wang [et al.] // ACS Appl. Mater. Interf. – 2014. – Vol. 6, N 16. – P. 14522–14532. https://doi.org/10.1021/am503787h

32. Manganese(II) phosphate nanoflowers as electrochemical biosensors for the high-sensitivity detection of ractopamine / Z. Zhang [et al.] // Sens Actuat B Chem. – 2015. – Vol. 211. – P. 310–317. https://doi.org/10.1016/j.snb.2015.01.106

33. Determination of clenbuterol, ractopamine and zilpaterol in liver and urine by liquid chromatography tandem mass spectrometry / J. Blanca [et al.] // Anal. Chim. Acta. – 2005. – Vol. 529, N 1–2. – P. 199–205. https://doi.org/10.1016/j.aca.2004.09.061

34. Determination of ractopamine in animal tissues by liquid chromatography-fluorescence and liquid chromatography/ tandem mass spectrometry / E. Shishani [et al.] // Anal. Chim. Acta. – 2003. – Vol. 483, N 1–2. – P. 137–145. https://doi.org/10.1016/S0003-2670(03)00120-X

35. Determination of ractopamine and clenbuterol in feeds by gas chromatography–mass spectrometry / L. He [et al.] // Anim. Feed Sci. Technol. – 2007. – Vol. 132, N 3–4. – P. 316–323. https://doi.org/10.1016/j.anifeedsci.2006.03.013

36. Shelver, W. L. Determination of ractopamine in cattle and sheep urine samples using an optical biosensor analysis: comparative study with HPLC and ELISA / W. L. Shelver, D. J. Smith // J. Agric. Food Chem. – 2003. – Vol. 51, N 13. – P. 3715–3721. https://doi.org/10.1021/jf021175q

37. Development of indirect competitive immunoassay for highly sensitive determination of ractopamine in pork liver samples based on surface plasmon resonance sensor / M. Liu [et al.] // Sens Actuat B Chem. – 2012. – Vol. 161, N 1. – P. 124– 130. https://doi.org/10.1016/j.snb.2011.09.078

38. Electrochemical sensor for toxic ractopamine and clenbuterol based on the enhancement effect of graphene oxide / C. Wu [et al.] // Sens Actuat B Chem. – 2012. – Vol. 168. – P. 178–184. https://doi.org/10.1016/j.snb.2012.03.084

39. Glassy carbon electrode modified with gold nanoparticles for ractopamine and metaproterenol sensing / J. H. Duan [et al.] // Chem. Phys. Lett. – 2013. – Vol. 574. – P. 83–88. https://doi.org/10.1016/j.cplett.2013.04.057

40. A label-free impedimetric immunosensor for detection of 1-aminohydantoin residue in food samples based on sol–gel embedding antibody / W. Jin [et al.] // Food Control. – 2014. – Vol. 39. – P. 185–191. https://doi.org/10.1016/j.foodcont.2013.11.001

41. DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery / R. Hu [et al.] // Angew Chem. Int. Ed. – 2014. – Vol. 53, N 23. – P. 5821–5826. https://doi.org/10.1002/ange.201400323

42. Preparation and enzymatic application of flower-like hybrid microcapsules through a biomimetic mineralization approach / J. F. Shi [et al.] // J. Mater. Chem. B. – 2014. – Vol. 2, N 27. – P. 4289–4296. https://doi.org/10.1039/C4TB00507D

43. Constructing inorganic shell onto LBL microcapsule through biomimetic mineralization: a novel and facile method for fabrication of microbioreactors / J. Li [et al.] // Soft Matter. – 2010. – Vol. 6, N 3. – P. 542–550. https://doi.org/10.1039/B918218G

44. Cytotoxicity, haematotoxicity and genotoxicity of high molecular arborescent polyoxyethylene with polyglycidol block containing shell / B. Klajnert [et al.] // Cell Biol. Inter. – 2006. – Vol. 30, N 3. – P. 248–252. https://doi.org/10.1016/j. cellbi.2005.10.026

45. Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (B). Efficiency of pharmacological action / V. Dzmitruk [et al.] // Inter. J. Pharm. – 2015 – Vol. 485, N 1–2. – P. 288–294. https://doi.org/10.1016/j.ijpharm.2015.03.034

46. Shcharbin, D. Poly(amidoamine) dendrimer complexes as a platform for gene delivery / D. Shcharbin, A. Shakhbazau, M. Bryszewska // Expert Opinion Drug Delivery. – 2013. – Vol. 10, N 12. – P. 1687–1698. https://doi.org/10.1517/17425247.2013.853661

47. Dendrimers show promise for siRNA and microRNA therapeutics / V. Dzmitruk [et al.] // Pharmaceutics. – 2018. – Vol. 10, N 3. – P. 126. https://doi.org/10.3390/pharmaceutics10030126

48. Dendrimer-protein interactions versus dendrimer-based nanomedicine / D. Shcharbin [et al.] // Colloids and Surfaces B: Biointerfaces. – 2017. – Vol. 152. – P. 414–422. https://doi.org/10.1016/j.colsurfb.2017.01.041


##reviewer.review.form##

Праглядаў: 710


Creative Commons License
Кантэнт даступны пад ліцэнзіяй Creative Commons Attribution 3.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)