DNA binding properties of 2ʹ-hydroxyflavanon and Schiff base derivative
https://doi.org/10.29235/1029-8940-2019-64-2-222-228
Abstract
Flavanoids a class of plant and fungus secondary metabolites. 2ʹ-Hydroxyflavanone was previously isolated from Mimosa pudica (L.) whole plant and was found to exhibit anti-inflammatory effects in vitro and binding with calf timus DNA. There are also reports on anti-inflammatory properties of compounds bearing flavanone/chromone nucleus. The aim of this work was to develop a synthesis of new azomethine compounds derived from flavanones, to examine their spectroscopic properties and interaction with DNA. 2ʹ-Hydroxyflavanone and thiocarbohydrazide were used as substrates in the synthesis. The obtained products were analyzed by 1H NMR spectroscopy, UVVis. Ultraviolet spectroscopy was used to analyze the chemical-physical properties. Mechanism of interaction of bioactive 2ʹ-hydroxyflavanone with calf thymus deoxyribonucleic acid (DNA) was studied employing UV absorption. 2ʹ-Hydroxyflavanon and 2ʹHFTCH are photostable in DMSO. The interaction of 2ʹ-hydroxyflavanone and its derivative occurs by the mechanism of intercalation. The change in the structure of the 2ʹ-hydroxyflavanone molecule by Schiff base modification leads to an increase in DNA-binding properties. High binding ability of 2ʹ-hydroxyflavanone with DNA may be useful for development of new anti-inflammatory and antimicrobial remedies.
About the Authors
V. M. KorolevichBelarus
Violetta M. Korolevich – Master of Biology.
23, Dneprovskaya Flotiliya Str., 225710, Pinsk.
P. Blazinska
Poland
Paulina Błazińska – Master of Chemistry, Postgraduate student.
4/10, Stefanowskii Str., 90-924, Lodz.
A. Sykula
Poland
Anna Sykuła – Ph. D. (Chem.), Assistant Professor.
4/10, Stefanowskii Str., 90-924, Lodz.
E. Lodyga-Chruscinska
Poland
Elżbieta Lodyga-Chruścińska – D. Sc. (Chem.), Professor.
4/10, Stefanowskii Str., 90-924, Lodz.
References
1. Walle T., Browning A. M., Steed L. L., Reed S. G., Walle U. K. Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans. Journal of Nutrition, 2005, vol. 135, no. 1, pp. 48–52. https://doi.org/10.1093/jn/135.1.48
2. Dorta D. J., Pigoso A. A., Mingatto F. E., Rodrigues T., Prado I. M. R., Helena A. F. C., Uyemura S. A., Santos A. C., Curti C. The interaction of flavonoids with mitochondria: effects on energetic processes. Chemico-Biological Interactions, 2005, vol. 152, no. 2–3, pp. 67–78. https://doi.org/10.1016/j.cbi.2005.02.004
3. Denny B. J., West P. W., Mathew T. C. Antagonistic interactions between the flavonoids hesperetin and naringenin and beta-lactam antibiotics against Staphylococcus aureus. British Journal of Biomedical Science, 2008, vol. 65, no. 3, pp. 145–147. https://doi.org/10.1080/09674845.2008.11732819
4. Rasulev B. F., Abdullaev N. D., Syrov V. N., Leszczynski J. A Quantitative Structure-Activity Relationship (QSAR) study of the antioxidant activity of flavonoids. QSAR & Combinatorial Science, 2005, vol. 24, no. 9, pp. 1056–1065. https://doi.org/10.1002/qsar.200430013
5. Rogerio A. P., Kanashiro A., Fontanari C., da Silva E. V. G., Lucisano-Valim Y. M., Soares E. G., Faccioli L. H. Antiinflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflammation Research, 2007, vol. 56, no. 10, pp. 402–408. https://doi.org/10.1007/s00011-007-7005-6
6. Nagaprashantha L. D., Singhal J., Li H., Warden Ch., Liu X., Horne D., Awasthi S., Salgia R., Singhal S. S. 2ʹ-Hydroxyflavanone effectively targets RLIP76-mediated drug transport and regulates critical signaling networks in breast cancer. Oncotarget, 2018, vol. 9, no. 26, pp. 18053–18068. https://doi.org/10.18632/oncotarget.24720
7. Hegde A. H., Prashanth S. N., Seetharamappa J. Interaction of antioxidant flavonoids with calf thymus DNA analyzed by spectroscopic and electrochemical methods. Journal of Pharmaceutical and Biomedical Analysis, 2012, vol. 63, pp. 40–46. https://doi.org/10.1016/j.jpba.2012.01.034
8. Da Silva C. M., da Silva D. L., Modolo L. V., Alves R. B., de Resende M. A., Martins C. V. B., de Fátima Â. Schiff bases: a short review of their antimicrobial activities. Journal of Advanced Research, 2011, vol. 2, no. 1, pp. 1–8. https://doi.org/10.1016/j.jare.2010.05.004
9. Rani A., Kumar M., Khare R., Tuli H. S. Schiff bases as an antimicrobial agent. JBCS, 2015, vol. 2, no. 1, pp. 62–91.
10. Lodyga-Chruscinska E., Symonowicz M., Sykula A., Bujacz A., Garribba E., Rowinska-Zyrek M. [et al.]. Chelating ability and biological activity of hesperetin Schiff base. Journal of Inorganic Biochemistry, 2018, vol. 143, pp. 34–47. https://doi.org/10.1016/j.jinorgbio.2014.11.005
11. Barnali J., Sudipta S., Debanjana G., Debosreeta B., Nitin C. Exploration of mode of binding of ctDNA with 3-hydroxyflavone: a contrast to the mode of binding with flavonoids having additional hydroxyl groups. Journal of Physical Chemistry, 2011, vol. 116, no. 1, pp. 639–645. https://doi.org/10.1021/jp2094824
12. Łodyga-Chruscińska E., Pilo M., Zucca A., Garribba E., Klewicka E., Symonowicza M., Chruscinki L., Cheshevik V. Physicochemical, antioxidant, DNA cleaving properties and antimicrobial activity of fisetin-copper chelates. Journal of Inorganic Biochemistry, 2018, vol. 180, pp. 101–118. https://doi.org/10.1016/j.jinorgbio.2017.12.006
13. Pyle A. M., Rehmann J. P., Meshoyrer R., Kumar C. V., Turro N. J., Barton J. K. Mixed-ligand complexes of ruthenium (II): factors governing binding to DNA. Journal of the American Chemical Society, 1989, vol. 111, no. 8, pp. 3051–3058. https://doi.org/10.1021/ja00190a046
14. Zarate X., Schott E., Escobar C. A., Lopez-Castro R., Echeverria C., Alvarado-Soto L., Ramirez-Tagle R. Interaction of chalcones with ct-dna by spectrophotometric analysis and theoreticalsimulations. Química Nova, 2016, vol. 39, no. 8, pp. 914–918. https://doi.org/10.5935/0100-4042.20160114
15. Jeyalakshmi K., Selvakumaran N., Bhuvanesh N. S. P., Sreekanth A., Karvembu R. DNA/protein binding and cytotoxicity studies of copper(II) complexes containing N,N0,N00-trisubstituted guanidine ligands. RSC Advances, 2014, vol. 4, no. 33, pp. 17179–17195. https://doi.org/10.1039/c4ra01459f