Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

DNA binding properties of 2ʹ-hydroxyflavanon and Schiff base derivative

https://doi.org/10.29235/1029-8940-2019-64-2-222-228

Abstract

Flavanoids a class of plant and fungus secondary metabolites. 2ʹ-Hydroxyflavanone was previously isolated from Mimosa pudica (L.) whole plant and was found to exhibit anti-inflammatory effects in vitro and binding with calf timus DNA. There are also reports on anti-inflammatory properties of compounds bearing flavanone/chromone nucleus. The aim of this work was to develop a synthesis of new azomethine compounds derived from flavanones, to examine their spectroscopic properties and interaction with DNA. 2ʹ-Hydroxyflavanone and thiocarbohydrazide were used as substrates in the synthesis. The obtained products were analyzed by 1H NMR spectroscopy, UVVis. Ultraviolet spectroscopy was used to analyze the chemical-physical properties. Mechanism of interaction of bioactive 2ʹ-hydroxyflavanone with calf thymus deoxyribonucleic acid (DNA) was studied employing UV absorption. 2ʹ-Hydroxyflavanon and 2ʹHFTCH are photostable in DMSO. The interaction of 2ʹ-hydroxyflavanone and its derivative occurs by the mechanism of intercalation. The change in the structure of the 2ʹ-hydroxyflavanone molecule by Schiff base modification leads to an increase in DNA-binding properties. High binding ability of 2ʹ-hydroxyflavanone with DNA may be useful for development of new anti-inflammatory and antimicrobial remedies.

About the Authors

V. M. Korolevich
Polessky State University.
Belarus

Violetta M. Korolevich – Master of Biology.

23, Dneprovskaya Flotiliya Str., 225710, Pinsk.



P. Blazinska
Lodz University of Technology.
Poland

Paulina Błazińska – Master of Chemistry, Postgraduate student.

4/10, Stefanowskii Str., 90-924, Lodz.



A. Sykula
Lodz University of Technology.
Poland

Anna Sykuła – Ph. D. (Chem.), Assistant Professor.

4/10, Stefanowskii Str., 90-924, Lodz.



E. Lodyga-Chruscinska
Lodz University of Technology.
Poland

Elżbieta Lodyga-Chruścińska – D. Sc. (Chem.), Professor.

4/10, Stefanowskii Str., 90-924, Lodz.



References

1. Walle T., Browning A. M., Steed L. L., Reed S. G., Walle U. K. Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans. Journal of Nutrition, 2005, vol. 135, no. 1, pp. 48–52. https://doi.org/10.1093/jn/135.1.48

2. Dorta D. J., Pigoso A. A., Mingatto F. E., Rodrigues T., Prado I. M. R., Helena A. F. C., Uyemura S. A., Santos A. C., Curti C. The interaction of flavonoids with mitochondria: effects on energetic processes. Chemico-Biological Interactions, 2005, vol. 152, no. 2–3, pp. 67–78. https://doi.org/10.1016/j.cbi.2005.02.004

3. Denny B. J., West P. W., Mathew T. C. Antagonistic interactions between the flavonoids hesperetin and naringenin and beta-lactam antibiotics against Staphylococcus aureus. British Journal of Biomedical Science, 2008, vol. 65, no. 3, pp. 145–147. https://doi.org/10.1080/09674845.2008.11732819

4. Rasulev B. F., Abdullaev N. D., Syrov V. N., Leszczynski J. A Quantitative Structure-Activity Relationship (QSAR) study of the antioxidant activity of flavonoids. QSAR & Combinatorial Science, 2005, vol. 24, no. 9, pp. 1056–1065. https://doi.org/10.1002/qsar.200430013

5. Rogerio A. P., Kanashiro A., Fontanari C., da Silva E. V. G., Lucisano-Valim Y. M., Soares E. G., Faccioli L. H. Antiinflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflammation Research, 2007, vol. 56, no. 10, pp. 402–408. https://doi.org/10.1007/s00011-007-7005-6

6. Nagaprashantha L. D., Singhal J., Li H., Warden Ch., Liu X., Horne D., Awasthi S., Salgia R., Singhal S. S. 2ʹ-Hydroxyflavanone effectively targets RLIP76-mediated drug transport and regulates critical signaling networks in breast cancer. Oncotarget, 2018, vol. 9, no. 26, pp. 18053–18068. https://doi.org/10.18632/oncotarget.24720

7. Hegde A. H., Prashanth S. N., Seetharamappa J. Interaction of antioxidant flavonoids with calf thymus DNA analyzed by spectroscopic and electrochemical methods. Journal of Pharmaceutical and Biomedical Analysis, 2012, vol. 63, pp. 40–46. https://doi.org/10.1016/j.jpba.2012.01.034

8. Da Silva C. M., da Silva D. L., Modolo L. V., Alves R. B., de Resende M. A., Martins C. V. B., de Fátima Â. Schiff bases: a short review of their antimicrobial activities. Journal of Advanced Research, 2011, vol. 2, no. 1, pp. 1–8. https://doi.org/10.1016/j.jare.2010.05.004

9. Rani A., Kumar M., Khare R., Tuli H. S. Schiff bases as an antimicrobial agent. JBCS, 2015, vol. 2, no. 1, pp. 62–91.

10. Lodyga-Chruscinska E., Symonowicz M., Sykula A., Bujacz A., Garribba E., Rowinska-Zyrek M. [et al.]. Chelating ability and biological activity of hesperetin Schiff base. Journal of Inorganic Biochemistry, 2018, vol. 143, pp. 34–47. https://doi.org/10.1016/j.jinorgbio.2014.11.005

11. Barnali J., Sudipta S., Debanjana G., Debosreeta B., Nitin C. Exploration of mode of binding of ctDNA with 3-hydroxyflavone: a contrast to the mode of binding with flavonoids having additional hydroxyl groups. Journal of Physical Chemistry, 2011, vol. 116, no. 1, pp. 639–645. https://doi.org/10.1021/jp2094824

12. Łodyga-Chruscińska E., Pilo M., Zucca A., Garribba E., Klewicka E., Symonowicza M., Chruscinki L., Cheshevik V. Physicochemical, antioxidant, DNA cleaving properties and antimicrobial activity of fisetin-copper chelates. Journal of Inorganic Biochemistry, 2018, vol. 180, pp. 101–118. https://doi.org/10.1016/j.jinorgbio.2017.12.006

13. Pyle A. M., Rehmann J. P., Meshoyrer R., Kumar C. V., Turro N. J., Barton J. K. Mixed-ligand complexes of ruthenium (II): factors governing binding to DNA. Journal of the American Chemical Society, 1989, vol. 111, no. 8, pp. 3051–3058. https://doi.org/10.1021/ja00190a046

14. Zarate X., Schott E., Escobar C. A., Lopez-Castro R., Echeverria C., Alvarado-Soto L., Ramirez-Tagle R. Interaction of chalcones with ct-dna by spectrophotometric analysis and theoreticalsimulations. Química Nova, 2016, vol. 39, no. 8, pp. 914–918. https://doi.org/10.5935/0100-4042.20160114

15. Jeyalakshmi K., Selvakumaran N., Bhuvanesh N. S. P., Sreekanth A., Karvembu R. DNA/protein binding and cytotoxicity studies of copper(II) complexes containing N,N0,N00-trisubstituted guanidine ligands. RSC Advances, 2014, vol. 4, no. 33, pp. 17179–17195. https://doi.org/10.1039/c4ra01459f


Review

Views: 536


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)