1. The brain interstitial system: Anatomy, modeling, in vivo measurement, and applications // Y. Lei [et al.] // Prog. Neurobiol. - 2017. - Vol. 157. - P. 230-246. https://doi.org/10.1016/j.pneurobio.2015.12.007
2. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease / M. J. Simon, J. J. Iliff // Biochim. Biophys. Acta (BBA) - Mol. Basis of Disease. - 2016. - Vol. 1862, N 3. - P. 442-451. https://doi.org/10.1016/j.bbadis.2015.10.014
3. Orešković, D. A new look at cerebrospinal fluid movement / D. Orešković, M. Klarica // Fluids and Barriers of the CNS. - 2014. - Vol. 11, N 1. - Art. 16. https://doi.org/10.1186/2045-8118-11-16
4. Титовец, Э. П. Аквапорины человека и животных : фундаментальные и клинические аспекты / Э. П. Титовец. - Минск : Белорус. наука, 2007. - 238 с.
5. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphaticʼ system? / N. J. Abbott [et al.] // Acta Neuropathol. - 2018. - Vol. 135, N 3. - P. 387-407. https://doi.org/10.1007/s00401-018-1812-4
6. Astrocyte-endothelial interactions at the blood-brain barrier / N. J. Abbott, L. Rönnbäck, E. Hansson // Nat. Rev. Neurosci. - 2006. - Vol. 7, N 1. - P. 41-53. https://doi.org/10.1038/nrn1824
7. Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet / N. N. Haj-Yasein [et al.] // Proc. Natl. Acad. Sci. - 2011. - Vol. 108, N 43. - P. 17815-17820. https://doi.org/10.1073/pnas.1110655108
8. Verkman, A. S. Aquaporins in clinical medicine / A. S. Verkman // Ann. Rev. Med. - 2012. - Vol. 63, N 1. - P. 303-316. https://doi.org/10.1146/annurev-med-043010-193843
9. Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance / J. S. Jung [et al.] // Proc. Natl. Acad. Sci. - 1994. - Vol. 91, N 26. - P. 13052-13056. https://doi.org/10.1073/pnas.91.26.13052
10. Heterotetrameric composition of aquaporin-4 water channels / J. D. Neely [et al.] // Biochemistry. - 1999. - Vol. 38, N 34. - P. 11156-11163. https://doi.org/10.1021/bi990941s
11. Dermietzel, R. Visualization by freeze-facturing of regular structures in glial cell membranes / R. Dermietzel // Naturwissenschaften. - 1973. - Vol. 60, N 4. - P. 208. https://doi.org/10.1007/bf00599446
12. Aggregation state determines the localization and function of M1- and M23-aquaporin-4 in astrocytes / A. J. Smith [et al.] // J. Cell Biol. - 2014. - Vol. 204, N 4. - P. 559-573. https://doi.org/10.1083/jcb.201308118
13. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation / S. Saadoun [et al.] // J. Cell Sci. - 2005. - Vol. 118, N 24. - P. 5691-5698. https://doi.org/10.1242/jcs.02680
14. Aquaporin-4 dynamics in orthogonal arrays in live cells visualized by quantum dot single particle tracking / J. M. Crane [et al.] // Mol. Biol. Cell. - 2008. - Vol. 19, N 8. - P. 3369-3378. https://doi.org/10.1091/mbc.e08-03-0322
15. Aquaporin-4: orthogonal array assembly, CNS functions, and role in neuromyelitis optica / A. S. Verkman [et al.] // Acta Pharmacol. Sin. - 2011. - Vol. 32, N 6. - P. 702-710. https://doi.org/10.1038/aps.2011.27
16. Nagelhus, E. A. Physiological roles of aquaporin-4 in brain / E. A. Nagelhus, O. P. Ottersen // Physiol. Rev. - 2013. - Vol. 93, N 4. - P. 1543-1562. https://doi.org/10.1152/physrev.00011.2013
17. Nagelhus, E. A. Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1 / E. A. Nagelhus, T. M. Mathiisen, O. P. Ottersen // Neuroscience. - 2004. - Vol. 129, N 4. - P. 905-913. https://doi.org/10.1016/j.neuroscience.2004.08.053
18. Rapid and reversible inhibition of aquaporin-4 by zinc / Y. Yukutake [et al.] // Biochemistry. - 2009. - Vol. 48, N 4. - P. 12059-12061. https://doi.org/10.1021/bi901762y
19. Savage, D. F. Structural basis of aquaporin inhibition by mercury / D. F. Savage, R. M. Stroud // J. Mol. Biol. - 2007. - Vol. 368, N 3. - P. 607-617. https://doi.org/10.1016/j.jmb.2007.02.070
20. Role of aquaporin-4 in the regulation of migration and invasion of human glioma cells / T. Ding [et al.] // Int. J. Oncol. - 2011. - Vol. 38, N 6. - P. 1521-1531. https://doi.org/10.3892/ijo.2011.983
21. Wang, D. Expression of AQP1 and AQP4 in paediatric brain tumours / D. Wang, B. K. Owler // J. Clin. Neurosci. - 2011. - Vol. 18, N 1. - P. 122-127. https://doi.org/10.1016/j.jocn.2010.07.115
22. Aquaporin-4 upregulated expression in glioma tissue is a reaction to glioma-associated edema induced by vascular endothelial growth factor / L. Yang [et al.] // Oncol. Rep. - 2012. - Vol. 28, N 5. - P. 1633-1638. https://doi.org/10.3892/or.2012.1973
23. Friedman, M. Principles and Models of Biological Transport / M. Friedman. - Berlin ; Heiderberg : Springer, 1986. - 260 p.
24. Titovets, E. Novel computational model of the brain water metabolism: introducing an interdisciplinary approach / E. Titovets // J. Comp. Syst. Biol. - 2018. - Vol. 2, N 1. - Art. 103.
25. Zhu, F. Theory and simulation of water permeation in aquaporin-1 / F. Zhu, E. Tajkhorshid, K. Schulten // Biophys. J. - 2005. - Vol. 86, N 1. - P. 50-57. https://doi.org/10.1016/s0006-3495(04)74082-5
26. Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method / E. Solenov [et al.] // Am. J. Physiol. Cell Physiol. - 2004. - Vol. 286, N 2. - P. C426-C432. https://doi.org/10.1152/ajpcell.00298.2003
27. Aquaporin-targeted therapeutics: state-of-the-field / L. Tradtrantip [et al.] // Adv. Exp. Med. Biol. - 2017. - Vol. 969. - P. 239-250. https://doi.org/10.1007/978-94-024-1057-0_16
28. The aquaporin-4 water channel as a potential drug target in neurological disorders / A. S. Verkman [et al.] // Expert Opin. Ther. Targets. - 2017. - Vol. 21, N 12. - P. 1161-1170. https://doi.org/10.1080/14728222.2017.1398236