Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

Morphological changes of mitochondria and mammalian cells, induced by hypochlorous acid

https://doi.org/10.29235/1029-8940-2019-64-2-156-168

Abstract

Hypochlorous acid, HOCl, is one of the most powerful biological oxidants and the most important mediator of inflammatory damage of cells and tissues. The purpose of this study was to characterize the morphological features of HOCl – induced oxidative impairment in rat liver mitochondria in vitro and to compare the processes of HOCl-induced oxidation in mitochondria, erythrocytes and B14 cells.

HOCl addition (300 μM) to mitochondrial suspension resulted in mitochondrial structural changes with a decrease in the mean total length of the crista and the average number of cristae in one mitochondria with no change in the length of one crista. There was shown a slight decrease in the average cross-sectional area of one mitochondria, mitochondrial profile elongation, an increase in the number of altered mitochondria and the heterogeneity of the population. Simultaneously we observed depolarization of the mitochondrial membrane, the rate and degree of which were determined by the concentration of HOCl. HOCl addition (25–150 μМ) induced lysis of erythrocytes for 60–180 s, which was preceded by a change in the shape and size of cells. The apparent dissociation constant for the HOCl – membrane complex was estimated to be Kd = 140 ± 25 μМ, and the Hill coefficient was to be 2.1. The B14 cell exposure to HOCl (100 μМ) led to a loss of ability to sorb on the substrate, to form associates, and to subsequent shrinkage of cells.

Therefore, HOCl caused some morphological (and functional) changes in rat liver mitochondria, which may serve as one of the causes of cell death in inflammatory foci. At the level of the whole cells, the HOCl addition induced lysis of red blood cells and deep damage to B14 cells.

About the Authors

I. B. Zavodnik
Yanka Kupala State University of Grodno.
Russian Federation

Ilya B. Zavodnik – D. Sc. (Biol.), Professor, Head of the Department.

22, Ozheshko Str., 230023, Grodno.



R. I. Kravchuk
State Medical University of Grodno.
Russian Federation

Rimma I. Kravchuk – Ph. D. (Biol.), Senior researcher.

80, Gorky Str., 230015, Grodno.



T. V. Ilyich
Yanka Kupala State University of Grodno.
Russian Federation

Tatsiana V. Ilyich – Postgraduate student.

22, Ozheshko Str., 230023, Grodno.



E. A. Lapshina
Yanka Kupala State University of Grodno.
Russian Federation

Elena A. Lapshina – Ph. D. (Biol.), Assistant Professor.

22, Ozheshko Str., 230023, Grodno.



A. G. Vejko
Yanka Kupala State University of Grodno.
Russian Federation

Artem G. Veiko – Postgraduate student.

22, Ozheshko Str., 230023, Grodno.



L. B. Zavodnik
Yanka Kupala State University of Grodno.
Russian Federation

Lev B. Zavodnik – Ph. D. (Med.), Assistant Professor.

22, Ozheshko Str., 230023, Grodno.



O. B. Astrowskaja
State Medical University of Grodno.
Russian Federation

Oxana B. Astrowskaja – Ph. D. (Biol.), Senior researcher.

80, Gorky Str., 230015, Grodno.



M. N. Kurbat
State Medical University of Grodno.
Russian Federation

Mihail N. Kurbat – Ph. D. (Med.), Assistant Professor, Head of the Laboratory.

80, Gorky Str., 230015, Grodno.



References

1. Vicca S., Massy Z. A., Hennequin C., Rihane D., Drüeke T. B., Lacour B. Apoptotic pathways involved in U937 cells exposed to LDL oxidized by hypochlorous acid. Free Radical Biology and Medicine, 2003, vol. 35, no. 6, pp. 603–615. https://doi.org/10.1016/s0891-5849(03)00361-7

2. Casciaro M., Di Salvo E., Pace E., Ventura-Spagnolo E., Navarra M., Gangemi S. Chlorinative stress in age-related diseases: a literature review. Immunity and Ageing, 2017, vol. 14, no. 1, pp. 14–21. https://doi.org/10.1186/s12979-017-0104-5

3. Whiteman M., Rose P., Siau J. L., Cheung N. S., Tan G. S., Halliwell B., Armstrong J. S. Hypochlorous acid-mediated mitochondrial dysfunction and apoptosis in human hepatoma HepG2 and human fetal liver cells: role of mitochondrial permeability transition. Free Radical Biology and Medicine, 2005, no. 38, no. 12, pp. 1571–1584. https://doi.org/10.1016/j.freeradbiomed.2005.02.030

4. Gujral J. S., Farhood A., Bajt M. L., Jaeschke H. Neutrophils aggravate acute liver injury during obstructive cholestasis in bile duct-ligated mice. Hepatology, 2003, vol. 38, no. 2, pp. 355–363. https://doi.org/10.1053/jhep.2003.50341

5. Favero T. G., Colter D., Hooper P. F., Abramson J. J. Hypochlorous acid inhibits Ca2+-ATPase from skeletal muscle sarcoplasmic reticulum. Journal of Applied Physiology, 1998, vol. 84, no. 2, pp. 425–430. https://doi.org/10.1152/jappl.1998.84.2.425

6. Fernandes R. M., da Silva N. P., Sato E. I. Increased myeloperoxidase plasma levels in rheumatoid arthritisda. Rheumatology International, 2011, vol. 32, no. 6, pp. 1605–1609. https://doi.org/10.1007/s00296-011-1810-5

7. Yang Y.-T. T., Whiteman M., Gieseg S. P. HOCl causes necrotic cell death in human monocyte derived macrophages through calcium dependent calpain activation. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research, 2012, vol. 1823, no. 2, pp. 420–429. https://doi.org/10.1016/j.bbamcr.2011.09.019

8. Maksimchik Yu. Z., Dremza I. K., Lapshina E. A., Cheshchevik V. T., Sudnikovich E. Yu., Zabrodskaya S. V., Zavodnik I. B. Damage to rat liver mitochondria during carbon tetrachloride intoxication. Effects of melatonin. Biologicheskie membrany = Biological membrane, 2010, no. 27, pp. 262–271 (in Russian).

9. Zavodnik I. B., Lapshina E. A., Zavodnik L. B., Bartosz G., Soszynski M., Bryszewska M. Hypochlorous acid damages erythrocyte membrane proteins and alters lipid bilayer structure and fluidity. Free Radical Biology and Medicine, 2001, vol. 30, no. 4, pp. 363–369. https://doi.org/10.1016/s0891-5849(00)00479-2

10. Zavodnik L. B., Zavodnik I. B., Lapshyna E. A., Buko V. U., Bryszewska M. J. Hypochlorous acid-induced membrane pore formation in red blood cells. Bioelectrochemistry, 2002, vol. 58, no. 2, pp. 157–161. https://doi.org/10.1016/s1567-5394(02)00151-2

11. Johnson D., Lardy H. A. Isolation of liver or kidney mitochondria. Methods in Enzymology, 1967, no. 10, pp. 94–96. https://doi.org/10.1016/0076-6879(67)10018-9

12. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 1951, vol. 193, no. 1, pp. 265–275.

13. Millonig G. A. Advantages of a phosphate buffer for osmium tetroxide solutions in fixation. Journal of Applied Physics, 1961, no. 32, pp. 1637–1643.

14. Reynolds E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. Journal of Cell Biology, 1963, vol. 17, no. 1, pp. 208–212. https://doi.org/10.1083/jcb.17.1.208

15. Watson M. L. Staining of tissue sections for electron microscopy with heavy metals. II. Application of solutions containing lead and barium. Journal of Cell Biology, 1958, vol. 4, no. 6, pp. 727–730. https://doi.org/10.1083/jcb.4.6.727

16. Åkerman K. E. O., Wikström M. K. F. Safranine as a probe of the mitochondrial membrane potential. FEBS Letters, 1976, vol. 68, no. 2, pp. 191–197. https://doi.org/10.1016/0014-5793(76)80434-6

17. Golovach N. G., Cheshchevik V. T., Lapshina E. A., Ilyich T. V., Zavodnik I. B. Calcium-induced mitochondrial permeability transitions: parameters of Ca2+ ion interactions with mitochondria and effects of oxidative agents. Journal of Membrane Biology, 2017, vol. 250, no. 2, pp. 225–236. https://doi.org/10.1007/s00232-017-9953-2

18. Zavodnik I. B., Kravchun R. I., Il’ich T. V., Glazev A. A., Lapshina E. A., Ostrovskaya O. B., Nefedov L. I., Klisa S. D., Kurbat M. N., Klimovich I. I. Mitochondrial ultrastructure and content of free amino acids in them during modeling of oxidative stress in vitro by the action of tert-butylhydroperoxide: protector action of flavonoids of cranberries. Laboratornaya diagnostika. Vostochnaya Evropa = Laboratory diagnostics. Eastern Europe, 2018, no. 1, pp. 112–124 (in Russian).

19. Whiteman M., Chu S. H., Siau J. L., Rose P., Sabapathy K., Schantz J. T., Cheung N. S., Spencer J. P., Armstrong J. S. The pro-inflammatory oxidant hypochlorous acid induces Bax-dependent mitochondrial permeabilisation and cell death through AIF-/EndoG-dependent pathways. Cellular Signalling, 2007, vol. 19, no. 4, pp. 705–714. https://doi.org/10.1016/j.cellsig.2006.08.019

20. Klamt F., Shacter E. Taurine chloramine, an oxidant derived from neutrophils, induces apoptosis in human B lymphoma cells through mitochondrial damage. Journal of Biological Chemistry, 2005, vol. 280, no. 22, pp. 21346–21352. https://doi.org/10.1074/jbc.m501170200

21. Soszyński M., Zavodnik I. B., Zavodnik L.B., Zylinska L., Bartosz G., Bryszewska M. Hypochlorous acid inhibits glutathione S-conjugate export from human erythrocytes. Biochimica et Biophysica Acta (BBA) – Biomembranes, 2002, vol. 1564, no. 2, pp. 479–486. https://doi.org/10.1016/s0005-2736(02)00500-x


Review

Views: 745


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)