THIAMINASE ACTIVITY OF MYOGLOBIN OXOFERRYL FORMS
https://doi.org/10.29235/1029-8940-2018-63-2-176-187
Abstract
Thiamine oxidation chemistry in presence of metmyoglobin and hydrogen peroxide is quite complex and different products can be formed. Incubation of thiamine with metmyoglobin and hydrogen peroxide can result in splitting of thiamine molecule at carbon atom of the methylene bridge and production of aminopyrimidine and thiazole components as separate molecules or in formation of thiochrome, thiamine disulfide, oxodihydrothiochrome, and thiaminethiazolone. Oxidative transformation of thiamine phosphate esters in presence of metmyoglobin and hydrogen peroxide gives similar products however thiaminase activity, i.e. splitting of the molecules into aminopyrimidine and thiazole phosphate parts, is much higher in this case. Addition of tyrosine or paracetamol to incubation mixture inhibits thiaminase activity and formation of disulfides, but yield of thiochrome or thiochrome phosphates increases. Identification of products of thiamine (or its phosphate esters) oxidation in the presence of metmyoglobin and hydrogen peroxide was performed using HPLC, mass-spectrometry and spectral-fluorescent methods. Role of oxoferryl forms of myoglobin in degradation of thiaminediphosphate, cofactor of the important enzymes of carbohydrate metabolism, by thiaminase mechanism is discussed.
About the Authors
I. I. StepuroBelarus
Ph. D. (Biol.), Leading researcher, Assistant Professor
S. A. Labor
Belarus
Postgraduate student, Junior researcher
A. V. Shuryberka
Belarus
Postgraduate student, Junior researcher
V. I. Stsiapura
Belarus
Ph. D. (Phys. and Math.), Leading researcher, Assistant Professor
V. Yu. Smirnov
Belarus
Senior Researcher, Assistant Professor
A. V. Yantsevich
Belarus
Ph. D. (Chem.), Head of the Laboratory
References
1. Inouye K., Katsura E. Etiology and pathology of beriberi. Beriberi and Thiamine. Tokyo, 1965, pp. 1–28.
2. Tanphaichitr V. Thiamine. Handbook of Vitamins. 3rd ed. New York, 2001, pp. 275–316.
3. Lonsdale D. A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives. Evidence-Based Complementary and Alternative Medicine, 2006, vol. 3, no. 1, pp. 49–59. DOI: 10.1093/ecam/nek009
4. Jordan F. Current mechanistic understanding of thiamin diphosphate-dependent enzymatic reactions. Natural Product Reports, 2003, vol. 20, no. 2, pp. 184–201. DOI: 10.1039/b111348h
5. Bâ A. Metabolic and structural role of thiamine in nervous tissues. Cellular and Molecular Neurobiology, 2008, vol. 28, no. 7, pp. 923–931. DOI: 10.1007/s10571-008-9297-7
6. Cooper J. R., Pincus J. H. The role of thiamine in nervous tissue. Neurochemical Research, 1979, vol. 4, no. 2, pp. 223–239. DOI: 10.1007/bf00964146
7. Itokawa Y., Schulz R. A., Cooper J. R. Thiamine in nerve membranes. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1972, vol. 266, no. 1, pp. 293–299. DOI: 10.1016/0005-2736(72)90144-7
8. Matsuda T., Cooper J. R. Thiamine as an integral component of brain synaptosomal membranes. Proceedings of the National Academy of Sciences, 1981, vol. 78, no. 9, pp. 5886–5889. DOI: 10.1073/pnas.78.9.5886
9. Blass J. P., Gleason P., Brush D., DiPonte P., Thaler H. Thiamine and Alzheimer’s disease. A pilot study. Archives of Neurology, 1988, vol. 45, no. 8, pp. 833–835. DOI: 10.1001/archneur.1988.00520320019008
10. Brown L. A., Harris F. L., Guidot D. M. Chronic ethanol ingestion potentiates TNF-alpha-mediated oxidative stress and apoptosis in rat type II cells. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2001, vol. 281, no. 2, pp. 377–386. DOI: 10.1152/ajplung.2001.281.2.l377
11. Schmid U., Stopper H., Heidland A., Schupp N. Benfotiamine exhibits direct antioxidative capacity and prevents induction of DNA damage in vitro. Diabetes/Metabolism Research and Reviews, 2008, vol. 24, no. 5, pp. 371–377. DOI: 10.1002/ dmrr.860
12. Matsushita H., Takeuchi Y., Kosaka K., Fushiki Sh., Kawata M., Sawada T. Changes in nitric oxide synthase-containing neurons in the brain of thiamine-deficient mice. Acta Histochemica et Cytochemica, 2000, vol. 33, no. 2, pp. 67–72. DOI: 10.1267/ahc.33.67
13. Calingasan N. Y., Gibson G. E. Vascular endothelium is a site of free radical production and inflammation in areas of neuronal loss in thiamine-deficient brain. Annals of the New York Academy of Sciences, 2000, vol. 903, pp. 353–356. DOI: 10.1111/j.1749-6632.2000.tb06386.x
14. Gibson G. E., Blass J. P. Thiamine-dependent processes and treatment strategies in neurodegeneration. Antioxidants and Redox Signaling, 2007, vol. 9, no. 10, pp. 1605–1619. DOI: 10.1089/ars.2007.1766
15. Gibson G. E., Zhang H. Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration. Neurochemistry International, 2002, vol. 40, no. 6, pp. 493–504. DOI: 10.1016/s0197-0186(01)00120-6
16. Stepuro I. I., Stepuro V. I. Oxidized thiamine derivatives. Mechanisms of formation under expasure to reactive nitrogen and oxygen species and in hemoprotein – catalyzed reactions. S. l., LAP LAMBERT Academic Publishing, 2014. 280 p.
17. Van Dort H. М., Van der Linde L. M., de Rijke D. Identification and synthesis of new odor compounds from photolysis of thiamine. Journal of Agricultural and Food Chemistry, 1984, vol. 32, no. 3, pp. 454–457. DOI: 10.1021/jf00123a007
18. Berezovskii V. M. Chemistry of Vitamins. 2nd ed. Moscow, Pishchevaya promyshlennost’ Publ., 1973. 632 p. (in Russian).
19. Okai Y., Higashi-Okai K., Sato E. F., Konaka R., Inoue M. Potent radical-scavenging activities of thiamin and thiamin diphosphate. Journal of Clinical Biochemistry and Nutrition, 2007, vol. 40, no. 1, pp. 42–48. DOI: 10.3164/jcbn.40.42
20. Stepuro I. I. Thiamine and vasculopathies. Prostaglandins, Leukotrienes and Essential Fatty Acids, 2005, vol. 72, no. 2, рр. 115–127. DOI: 10.1016/j.plefa.2004.10.009
21. Reddi K. K., Giri K.V. Purification and separation of the two thiaminases in fresh water mussel (Lamellidens margin-alis). Enzymologia, 1948/1949, vol. 13, p. 281.
22. Ostrovskii Yu. M. Thiamine: Selected chapters on the biochemistry of vitamin B1. Minsk, Belarus’ Publ., 1971. 142 p. (in Russian).
23. Fujita A., Nose Y., Kuratani K. The second type of bacterial thiaminase. Journal of Vitaminology, 1954, vol. 1, no. 1, pр. 1–7. DOI: 10.5925/jnsv1954.1.1
24. Somogyi J. C., Bönicke R. Connection between chemical structure and antithiamine activity of various phenol derivatives. Internationale Zeitschrift für Vitaminforschung, 1969, vol. 39, no. 1, pр. 65–73.
25. Somogyi J. On antithiamine factors of fern. Journal of Vitaminology, 1971, vol. 17, no. 3, pp. 165–174. DOI: 10.5925/ jnsv1954.17.165
26. Vimokesant S., Kunjara S., Rungruangsak K., Nakornchai S., Panijpan B. Beriberi caused by antithiamin factors in food and its prevention. Annals of the New York Academy of Sciences, 1982, vol. 378, no. 1, pp. 123–136. DOI: 10.1111/j.1749-6632.1982.tb31191.x
27. Rungruangsak K., Tosukhowong P., Panijpan B, Vimokesant S. L. Chemical interactions between thiamin and tannic acid. I. Kinetics, oxygen dependence and inhibition by ascorbic acid. American Journal of Clinical Nutrition, 1977, vol. 30, no. 10, pp. 1680–1685. DOI: 10.1093/ajcn/30.10.1680
28. Singleton C. K., Martin P. R. Molecular mechanisms of thiamine utilization, Current Molecular Medicine, 2001, vol. 1, no. 2, pp. 197–207. DOI: 10.2174/1566524013363870
29. Ariaey-Nejad M. R., Pearson W. N. 4-Methylthiazole-5-acetic acid – a urinary metabolite of thiamine. Journal of Nutrition, 1968, vol. 96, no. 4, pр. 445–449. DOI: 10.1093/jn/96.4.445
30. White A., Hendler F., Smith E., Hill P., Leman I. Principles of Biochemistry. 6th ed. New York, McGraw-Hill, 1978. 1492 p. (Russ. ed. : Uait A., Khendler F., Smit E., Khill R., Leman I. Principles of Biochemistry. Moscow, Mir Publ., 1981, vol. 3, pp. 1155–1878).
31. Everse J., Johnson M. C, Marini C. Peroxidative activities of hemoglobin and hemoglobin derivatives. Methods in Enzymology, 1994, vol. 231, pp. 547–561. DOI: 10.1016/0076-6879(94)31038-6
32. Everse J., Hsia N. The toxicities of native and modified hemoglobins. Free Radical Biology and Medicine, 1997, vol. 22, no. 6, pp. 1075–1099. DOI: 10.1016/s0891-5849(96)00499-6
33. Нerold S., Rehman F.-J. K. Kinetic and mechanistic studies of the reactions of nitrogen monoxide and nitrite with ferryl myoglobin. Journal of Biological Inorganic Chemistry, 2001, vol. 6, no. 5–6, pp. 543–555. DOI: 10.1007/s007750100231
34. Lawrence A., Jones C. M., Wardman P., Burkitt M. J. Evidence for the role of a peroxidase compound I-type intermediate in the oxidation of glutathione, NADH, ascorbate, and dichloofluorescin by cytochrome c/H2O2. Journal of Biological Chemistry, 2003, vol. 278, no. 32, pp. 29410–29419. DOI: 10.1074/jbc.m300054200
35. Stepuro I. I., Oparin A. Yu., Stsiapura V. I., Maskevich S. A., Titov V. Yu. Oxidation of thiamine on reaction with nitrogen dioxide generated by ferric myoglobin and hemoglobin in the presence of nitrite and hydrogen peroxide. Biochemistry (Moscow), 2012, vol. 77, no. 1, pp. 41–55. DOI: 10.1134/s0006297912010051
36. Exner M., Herold S. Kinetic and mechanistis studies of the peroxynitrite – mediated oxidation of oxymyoglobin and oxyhemoglobin. Chemical Research in Toxicology, 2000, vol. 13, no. 4, pp. 287–293. DOI: 10.1021/tx990201k
37. Giulivi C., Davies K. J. A. [30] Hydrogen peroxide mediated ferrilhemoglobin generation in vitro and in red blood cells. Methods in Enzymology, 1994, vol. 231, pp. 490–496. DOI: 10.1016/0076-6879(94)31032-7
38. Svistunenko D. A., Patel R. P., Voloshchenko S. V., Wilson M. T. The globin-based free radical of ferryl hemoglobin is detected in normal human blood. Journal of Biological Chemistry, 1997, vol. 272, no. 11, рр. 7114–7121. DOI: 10.1074/ jbc.272.11.7114
39. Labor S. A., Stepuro V. I., Stepuro I. I., Smirnov V. Yu. In the presence of phenol-containing compounds oxoferryl forms of myoglobin and hemoglobin catalyze oxidative transformation of thiamine and its derivatives. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya biyalagichnych navuk = Proceedings of the National Academy of Sciences of Belarus. Biological series, 2017, no. 2, pp. 55–65 (in Russian).
40. Shikama K. Autoxidation of oxymyoglobin: A meeting point of the stabilization and the activation of molecular oxygen. Biological Reviews, 1990, vol. 65, no. 4, pp. 517–527. DOI: 10.1111/j.1469-185X.1990.tb01236.x
41. Yusa K., Shikama K. Oxidation of oxymyoglobin to metmyoglobin with hydrogen peroxide: Involvement of ferryl intermediate. Biochemistry, 1987, vol. 26, no. 21, pp. 6684–6688. DOI: 10.1021/bi00395a018
42. Wallace W. J., Houtchens R. A., Maxwell J. C., Caughey W. S. Mechanism of autooxidation for hemoglobins and myoglobins. Promotion of superoxide production by protons and anions. Journal of Biological Chemistry, 1982, vol. 257, no. 9, pp. 4966–4977.
43. Gunther M. R., Sampath V., Caughey W. S. Potential roles of myoglobin autoxidation in myocardial ischemia-reper-fusion injury. Free Radical Biology and Medicine, 1999, vol. 26, no. 11–12, рp. 1388–1395. DOI: 10.1016/s0891-5849(98)00338-4