PHOTOSYNTHESIS AND RESPIRATION IN WINTER RAPE PLANTS (BRASSICA NAPUS) ENRICHED WITH ANTHOCYANIN’S UNDER INFLUENCE OF 5-AMINOLEVULINIC ACID
https://doi.org/10.29235/1029-8940-2018-63-2-155-162
Abstract
The stimulating effect of 5-aminolevulinic acid (ALA) at a concentration of 200 mg/l on respiratory activity was established by accumulating non-covalently bound to the proteins heme and increasing the activity of the heme-containing enzyme cytochrome c-oxidase, as well as increasing the rate of oxygen absorption in the respiration of winter rape with high content of anthocyanin’s. The inhibitory effect of ALA on the structural organization and photosynthetic activity of the photosynthetic apparatus was revealed. A decrease in the level of photosynthetic pigments – chlorophyll a and b, reduction in protein content of chlorophyll-protein complexes of two photosystems, as well as decrease in the ability of plants to release oxygen were demonstrated.
About the Authors
H. V. YemelyanavaBelarus
Junior researcher
L. V. Obukhovskaya
Belarus
Ph. D. (Biol.), Leading Scientific Researcher
N. G. Averina
Belarus
D. Sc. (Biol.), Chief Researcher, Professor
References
1. Møller I. M. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, vol. 52, pp. 561‒591. DOI: 10.1146/ annurev.arplant.52.1.561
2. Chupakhina G. N., Maslennikov P. V., Skrypnik L. N.. Natural antioxidants (ecological aspect). Kaliningrad, Baltic Federal University, 2011. 112 p. (in Russian).
3. Gould K. S., Markham K. R., Smith R. H., Goris J. J. Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn. Journal of Experimental Botany, 2000, vol. 51, no. 347, pp. 1107–1115. DOI: 10.1093/jexbot/51.347.1107
4. Feild T. S., Lee D. W., Holbrook N. M. Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiology, 2001, vol. 127, no. 2, pp. 566–574. DOI: 10.1104/pp.127.2.566
5. Neill S. O., Gould K. S. Anthocyanins in leaves: light attenuators or antioxidants? Functional Plant Biology, 2003, vol. 30, no. 8, pp. 865–873. DOI: 10.1071/FP03118
6. Wang H., Cao G., Prior R. L. Oxygen radical absorbing capacity of anthocyanins. Journal of Agricultural and Food Chemistry, 1997, vol. 45, no. 2, pp. 304–309. DOI: 10.1021/jf960421t
7. Karabanov I. A. Flavonoids in the world of plant. Minsk, Uradzhai Publ., 1981. 80 p. (in Russian).
8. Giusti M. M., Rodriguez-Saona L. E., Wrolstad R. E. Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins. Journal of Agricultural and Food Chemistry, 1999, vol. 47, no. 11, pp. 4631– 4637. DOI: 10.1021/jf981271k
9. Xie L., Wang Z. H., Cheng X. H., Gao J. J., Zhang Z. P., Wang L. J. 5-Aminolevulinic acid promotes anthocyanin accumulation in Fuji apples. Plant Growth Regulation, 2013, vol. 69, no. 3, pp. 295–303. DOI: 10.1007/s10725-012-9772-5
10. Xu F., Chang J., Cheng Sh.Y., Zhu J., Li L. L., Wang Y., Cheng H. Promotive effect of 5-aminolevulinic acid on the antioxidant system in Ginkgo biloba leaves. African Journal of Biotechnology, 2009, vol. 8, no. 16, pp. 3769–3776.
11. Emel’yanova A. V. The role of exogenous 5-aminolevulinic acid in inducing the accumulation of anthocyanins of plants winter rape. Vestsі Natsyyanal’nai akademіі navuk Belarusі. Ceryya bіyalagіchnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Biological series, 2016, no. 3, pp. 66‒69 (in Russian).
12. Averina N. G., Yaronskaya E. B. Biosynthesis of tetrapyrroles in plants. Minsk, Belaruskaya navuka Publ., 2012. 413 p. (in Russian).
13. Shlyk A. A. Determination of chlorophylls and carotenoids in extracts of green leaves. Biokhimicheskie metody v fiziologii: sbornik statei [Biochemical methods in plant physiology: a collection of articles], 1971, pp. 154‒170 (in Russian).
14. Averina N. G., Shcherbakov R. A., Vershilovskaya I. V., Domanskaya I. N. The use of exogenous 5-aminolevulinic acid of respiration and photosynthesis in plants of winter rape (Brassica napus) grown on a sulfonylurea herbicide. Vestsі Natsyyanal’nai akademіі navuk Belarusі. Ceryya bіyalagіchnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Biological series, 2015, no. 3, pp. 23‒27 (in Russian).
15. Kruse E., Mock H-P., Grimm B. Coproporphyrinogen III oxidase from barley and tobacco – secuence analysis and initial expression studies. Planta, 1995, vol. 196, pp. 796–803. DOI: 10.1007/BF01106776
16. Weinstein J. D., Beale S. I. Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. Journal of Biological Chemistry, 1983, vol. 258, no. 11, pp. 6799‒6807.
17. Millenaar F. F., Gonzalez-Meler M. A., Siedow J. N., Wagner A. M., Lambers H. Role of sugars and organic acids in regulating the concentration and activity of the alternative oxidase in Poa annua roots. Journal of Experimental Botany, 2002, vol. 53, no. 371, pp. 1081‒1088. DOI: 10.1093/jexbot/53.371.1081
18. Yaronskaya E. B. Molecular-membrane mechanisms of biosynthesis regulation of tetrapyrroles in plants. Ph. D. Thesis. Minsk, 2008. 407 p. (in Russian).
19. Czarnecki O., Hedtke B., Melzer M., Rothbart M., Richter A., Schroter Y., Pfannschmidt T., Grimm B. An Arabidopsis GluTR binding protein mediates spatial separation of 5-aminolevulinic acid synthesis in chloroplast. Plant Cell, 2011, vol. 23, no. 12, pp. 4476‒4491. DOI: 10.1105/tpc.111.086421
20. Averina N. G., Sherbakov R. A., Yemelyanava H. V., Domanskaya I. N., Usatov A. V. Induction of anthocyanin accumulation and status of protective system in winter rape plants treated with 5- aminolevulinic acid. Russian Journal of Plant Physiology, 2017, vol. 64, no. 3, pp. 310–318. DOI: 10.1134/s1021443717030025