Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

INDUCED PLURIPOTENT STEM CELLS, CRISPR-CAS9 (KRISPER) GENOME EDITING SYSTEM AND PERSPECTIVES OF SOLVING THE PROBLEM OF GENE THERAPY OF HUMAN HEREDITARY DISEASES

https://doi.org/10.29235/1029-8940-2018-63-1-113-125

Abstract

The given review considers the two original technologies in the field of cell biology turning our views over the processes taking place during embryogenesis with proteins of which our organism is built. They appeared more recently, attracted the closest attention of the biologists and have served as a powerful impetus for development of new researches aimed at a targeted change in the structure and function of cell genetic apparatus. These technologies are directly tied to mesenchymal stem cells and pursue the solution of the tasks facing gene therapy of human hereditary diseases. The first one considers induced pluripotent stem cells, e.g. giving somatic cells the ability to turn into each specialized cells of organism. The second technology offers quite simple and feasible in conditions of biological laboratory approach of editing cell genome. It consists in carrying out at the level of genome genetic engineering manipulations terminating in the elimination of mutations from genes, defected genes or insertion into genome of new gene devoted of any errors.

 

About the Authors

I. D. Volotovski
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk
Belarus
Academician, D. Sc. (Biol.), Professor, Head of the Department


A. G. Poleshko
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk
Belarus
Ph. D. (Biol.), Researcher


References

1. Pera M. F. Human pluripotent stem cells: a progress report. Current opinion in genetics and development, 2001, vol. 11, no. 5, pp. 559–599. DOI: 10.1016/s0959-437x(00)00238-0

2. Matin M. M., Andrews P. W., Bahrami A. R., Damjanov I., Gokhale P., Draper J. S. Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochemical Society Transactions, 2005, vol. 33, no. 6, pp. 1526–1530. DOI: 10.1042/bst20051526

3. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, vol. 126, no. 4, pp. 663–676. DOI: 10.1016/j.cell.2006.07.024

4. Stadtfeld M., Nagaya M., Utikal J., Weir G., Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science, 2008, vol. 322, no. 5903, pp. 945–949. DOI: 10.1126/science.1162494

5. Prowse A. B. J., McQuade L. R., Bryant K. J., Marcal H., Gray P. P. Identification of potential pluripotency determinants for human embryonic stem cells following proteomic analysis of human and mouse fibroblast conditioned media. Journal of Proteome Research, 2007, vol. 6, no. 9, pp. 3796–3807. DOI: 10.1021/pr0702262

6. Yuan H., Corbi N., Basilico C., Dailey L. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes and Development, 1995, vol. 9, no. 21, pp. 2635–2645. DOI: 10.1101/gad.9.21.2635

7. Bernstein B. E., Mikkelsen T. S., Xie X., Kamal M., Huebert D. J., Cuff J., Fry B., Meissner A., Wernig M., Plath K., Jaenisch R., Wagschal A., Feil R., Schreiber S. L., Lander E. S. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 2006, vol. 125, no. 2, pp. 315–326. DOI: 10.1016/j.cell.2006.02.041

8. Nichols J., Zevnik B., Anastassiadis K., Niwa H., Klewe-Nebenius D., Chambers I., Schöler H., Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 1998, vol. 95, no. 3, pp. 379–391. DOI: 10.1016/s0092-8674(00)81769-9

9. Dang D. T., Pevsner J., Yang V. W. The biology of the mammalian Krüppel-like family of transcription factors. The Interna- tional Journal of Biochemistry and Cell Biology, 2000, vol. 32, no. 11–12, pp. 1103–1121. DOI: 10.1016/s1357-2725(00)00059-5

10. Dang C. V., O’Donnell K. A., Zeller K. I., Nguyen T., Osthus R. C., Li F. The c-Myc target gene network. Seminars in Cancer Biology, 2006, vol. 16, no. 4, pp. 253–264. DOI: 10.1016/j.semcancer.2006.07.014

11. Patel J. H., Loboda A. P., Showe M. K., Showe L. C., McMahon S. B. Analysis of genomic targets reveals complex functions of MYC. Nature Reviews. Cancer, 2004, vol. 4, no. 7, pp. 562–568. DOI: 10.1038/nrc1393

12. Chang T.-C., Yu D., Lee Y.-S., Wentzel E. A., Arking D. E., West K. M., Dang C. V., Thomas-Tikhonenko A., Mendell J. T. Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genetics, 2008, vol. 40, no. 1, pp. 43–50. DOI: 10.1038/ng.2007.30

13. Nakagawa M., Koyanagi M., Tanabe K., Takahashi K., Ichisaka T., Aoi T., Okita K., Mochiduki Y., Takizawa N., Yamanaka S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 2008, vol. 26, no. 1, pp. 101–106. DOI: 10.1038/nbt1374

14. Yu J., Vodyanik M. A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J. L., Tian S., Nie J., Jonsdottir G. A., Ruotti V., Stewart R., Slukvin I. I., Thomson J. A. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, vol. 318, no. 5858, pp. 1917–1920. DOI: 10.1126/science.1151526

15. Matsui T., Leung D., Miyashita H., Maksakova I. A., Miyachi H., Kimura H., Tachibana M., Lorincz M. C., Shinkai Y. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature, 2010, vol. 464, no. 7290, pp. 927–931. DOI: 10.1038/nature08858

16. Maherali N., Ahfeldt T., Rigamonti A., Utikal J., Cowan C., Hochedlinger K. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell, 2008, vol. 3, no. 3, pp. 340–345. DOI: 10.1016/j.stem.2008.08.003

17. Rais Y., Zviran A., Geula S., Gafni O., Chomsky E., Viukov S., Mansour A. A., Caspi I., Krupalnik V., Zerbib M., Maza I., Mor N., Baran D., Weinberger L., Jaitin D. A., Lara-Astiaso D., Blecher-Gonen R., Shipony Z., Mukamel Z., Hagai T., Gilad S., Amann-Zalcenstein D., Tanay A., Amit I., Novershtern N., Hanna J. H. Deterministic direct reprogramming of somatic cells to pluripotency. Nature, 2013, vol. 502, no. 7469, pp. 65–70. DOI: 10.1038/nature12587

18. Kaji K., Nichols J., Hendrich B. Mbd3, a component of the NuRD co-repressor complex, is required for development of pluripotent cells. Development, 2007, vol. 134, no. 6, pp. 1123–1132. DOI: 10.1242/dev.02802

19. Cong L., Ran F. A., Cox D., Lin S., Barretto R., Habib N., Hsu P. D., Wu X., Jiang W., Marraffini L. A., Zhang F. Multiplex genome engineering using CRISPR/Cas9 systems. Science, 2013, vol. 339, no. 6121, pp. 819–823. DOI: 10.1126/science.1231143

20. Capecchi M. R. Gene targeting in mice: functional analisys of mammalian genome for the twenty-first century. Nature Reviews Genetics, 2005, vol. 6, no. 6, pp. 507–512. DOI: 10.1038/nrg1619

21. Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C. Potent a specific genetic interference by double-stranded RNAi Caenoharbditis elegans. Nature, 1998, vol. 391, no. 6669, pp. 806–811. DOI: 10.1038/35888

22. Elbashir S. M., Harborth J., Weber K., Tuschl T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 2002, vol. 26, no. 2, pp. 199–213. DOI: 10.1016/s1046-2023(02)00023-3

23. Martinez J., Patkaniowska A., Elbashir S. M., Harborth J., Hossbach M., Urlaub H., Meyer J., Weber K., Vandenburgh K., Manninga H., Scaringe S. A., Luehrmann R., Tuschl T. Analysis of mammalian gene function using small inreference RNAs. Nucleic Acids Research. Supplement, 2003, vol. 3, no. 1, p. 333. DOI: 10.1093/nass/3.1.333

24. Alic N., Hoddinott M. P., Foley A., Slack C., Piper M. D., Partridge L. Detrimental effects of RNAi: a cautionary note on its use in Drosophila ageing. PloS One, 2012, vol. 7, no. 9, pp. e45376. DOI: 10.1371/journal.pone.0045367

25. Aartsma-Rus A., Fokkema I., Verschuuren J., Ginjaar I., van Deutekom J., van Ommen G. J., den Dunnen J. T. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dsptrophy. Human Mutation, 2009, vol. 30, no. 3, pp. 293–299. DOI: 10.1002/humu.20918

26. Porteus M. H. Mammalian gene targeting with designed zinc finger nucleases. Molecular Therapy, 2006, vol. 13, no. 2, pp. 438–446. DOI: 10.1016/j.ymthe.2005.08.003

27. Mussolino C., Morbitzer R., Lütge F., Dannemann N., Lahaye T., Cathomen T. A novel TALE nuclease acagffold enable high genome editing activity in combination with low toxicity. Nucleic Acids Research, 2011, vol. 39, no. 21, pp. 9283–9293. DOI: 10.1093/nar/gkr597

28. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, vol. 337, no. 6096, pp. 816–821. DOI: 10.1126/science.1225829

29. Ebina H., Misawa N., Kanemura Y., Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Scientific Reports, 2013, no. 3, art. nr 2510. DOI: 10.1038/srep02510

30. Valetdinova K. R. Application of CRISPR/Cas9 system for developing and studying cellular models of inherited disease. Geny i kletki [Genes and Cells], 2016, vol. 11, no. 2, pp. 10–20 (in Russian).


Review

Views: 922


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)