CpG-ОЛИГОДЕЗОКСИНУКЛЕОТИДЫ И ИХ ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ
Аннотация
Бактериальные ДНК (в том числе плазмиды) и синтетические олиго-2ʹ-дезоксинуклеотиды, содержащие неметилированные CpG-динуклеотиды (CpG-ОДН), при введении в организм человека и животных стимулируют как врожденные, так и адаптивные иммунные ответы. В связи с этим терапевтическое применение CpG-ОДН против инфекционных, онкологических и аллергических заболеваний является весьма перспективным. Однако молекулы CpG-ОДН заряжены отрицательно и поэтому с трудом проникают через клеточные мембраны, имеющие аналогичный поверхностный заряд. Кроме того, природные CpG-ОДН легко расщепляются нуклеазами. Одним из эффективных способов защиты CpG-ОДН от деградации нуклеазами является химическая модификация их сахарофосфатного скелета. В то же время известны случаи, когда введение таких модифицированных молекул приводило к серьезным побочным эффектам. Все эти обстоятельства существенно ограничивают терапевтическое применение CpG-ОДН и подогревают интерес к поиску эффективных систем доставки CpG-ОДН в ткани и клетки-мишени.
Наблюдаемый в последние годы существенный прогресс в области нанобиотехнологий предоставил беспрецедентные возможности для инкапсулирования лекарственных субстанций (в том числе CpG-ОДН) в различные наноразмерные транспортные системы, а также для синтеза из CpG-ОДН разнообразных по форме наноразмерных структур. При использовании таких систем доставки значительно повышается как стабильность CpG-ОДН, так и степень их интернализации в клетки-мишени. Кроме того, применение таких транспортных наносистем, возможно, позволит отказаться от вызывающей побочные эффекты химической модификации CpG-ОДН.
Об авторах
А. И. ЗинченкоБеларусь
член-корреспондент, д-р биол. наук, профессор, заведующий лабораторией
ул. Купревича, 2, 220141
А. С. Щеколова
Беларусь
канд. биол. наук, ст. науч. сотрудник
ул. Купревича, 2, 220141
Список литературы
1. Medzhitov, R. Innate immunity: the virtues of a nonclonal system of recognition / R. Medzhitov, C. A. Janeway // Cell. – 1997. – Vol. 91. – P. 295–298.
2. Janeway, C. A. Innate immune recognition / C. A. Janeway, R. Medzhitov // Annu. Rev. Immunol. – 2002. – Vol. 20. – P. 197–216.
3. Aderem, A. Toll-like receptors in the induction of the innate immune response / A. Aderem, R. J. Ulevitch // Nature. – 2000. – Vol. 406. – P. 782–787.
4. Hobohm, U. Pathogen-associated molecular pattern in cancer immunotherapy / U. Hobohm, J. L. Stanford, J. M. Grange // Crit. Rev. Immunol. – 2008. – Vol. 28, N 2. – P. 95–107.
5. Pathogen-associated molecular patterns induced crosstalk between dendritic cells, T helper cells, and natural killer helper cells can improve dendritic cell vaccination / T. Oth [et al.] // Mediat. Inflam. – 2016. – Vol. 2016:5740373.
6. CpG motifs in bacterial DNA trigger direct B-cell activation / A. M. Krieg [et al.] // Nature. – 1995. – Vol. 374. – P. 546–549.
7. Krieg, A. M. Therapeutic potential of toll-like receptor 9 activation / A. M. Krieg // Nat. Rev. Drug Discov. – 2006. – Vol. 5. – P. 471–484.
8. Krieg, A. M. Mechanisms and applications of immune stimulatory CpG oligodeoxynucleotides / A. M. Krieg // BBAGene Struct. Expr. – 1999. – Vol. 1489. – P. 107–116.
9. Jain, V. V. CpG DNA and immunotherapy of allergic airway diseases / V. V. Jain, K. Kitagaki, J. N. Kline // Clin. Exp. Allergy. – 2003. – Vol. 33, N 10. – P. 1330–1335.
10. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition / S. Bauer [et al.] // Proc. Natl. Acad. Sci. USA. – 2001. – Vol. 98, N 16. – P. 9237–9242.
11. Krieg, A. M. CpG motifs in bacterial DNA and their immune effects / A. M. Krieg // Annu. Rev. Immunol. – 2002. – Vol. 20. – P. 709–760.
12. Klinman, D. M. Immunotherapeutic uses of CpG oligodeoxynucleotides / D. M. Klinman // Nat. Rev. Immunol. – 2004. – Vol. 4, N 4. – P. 249–258.
13. Immune mechanisms and therapeutic potential of CpG oligodeoxynucleotides / H. L. Wilson [et al.] // Int. Rev. Immunol. – 2006. – Vol. 25, N 3/4. – P. 183–213.
14. Stacey, K. J. Macrophages ingest and are activated by bacterial DNA / K. J. Stacey, M. J. Sweet, D. A. Hume // J. Immunol. – 1996. – Vol. 157, N 5. – P. 2116–2122.
15. Type I interferon-mediated stimulation of T cells by CpG DNA / S. Q. Sun [et al.] // J. Exp. Med. – 1998. – Vol. 188. – P. 2335–2342.
16. Fonseca, D. E. Use of CpG oligodeoxynucleotides in treatment of asthma and allergic disease / D. E. Fonseca, J. N. Kline // Adv. Drug Delivery. Rev. – 2009. – Vol. 61. – P. 256–262.
17. CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases / D. M. Klinman [et al.] // Adv. Drug Delivery. Rev. – 2009. – Vol. 61, N 3. – P. 248–255.
18. Murad, Y. M. CpG oligodeoxynucleotides as TLR9 agonists: therapeutic applications in cancer / Y. M. Murad, T. M. Clay // BioDrugs. – 2009. – Vol. 23, N 6. – P. 361–375.
19. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation / H. Hacker [et al.] // EMBO J. – 1998. – Vol. 17, N 21. – P. 6230–6240.
20. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner / M. Rutz [et al.] // Eur. J. Immunol. – 2004. – Vol. 34, N 9. – P. 2541–2550.
21. Rapid immune activation by CpG motifs in bacterial DNA: systemic induction of IL-6 transcription through an antioxidant-sensitive pathway / A. K. Yi [et al.] // J. Immunol. – 1996. – Vol. 157, N 12. – P. 5394–5402.
22. Cyclosporin A enhances IL-12 production by CpG motifs in bacterial DNA and synthetic oligodeoxynucleotides / T. W. Redford [et al.] // J. Immunol. – 1998. – Vol. 161, N 8. – P. 3930–3935.
23. Akira, S. Pathogen recognition and innate immunity / S. Akira, S. Uematsu, O. Takeuchi // Cell. – 2006. – Vol. 124, N 4. – P. 783–801.
24. Distinct response of human B cell subpopulations in recognition of an innate immune signal, CpG DNA / J. Jung [et al.] // J. Immunol. – 2002. – Vol. 169, N 5. – P. 2368–2373.
25. Bernasconi, N. L. Maintenance of serological memory by polyclonal activation of human memory B cells / N. L. Bernasconi, E. Traggiai, A. Lanzavecchia // Science. – 2002. – Vol. 298. – P. 2199–2202.
26. Type I interferon dependence of plasmacytoid dendritic cell activation and migration / C. Asselin-Paturel [et al.] // J. Exp. Med. – 2005. – Vol. 201, N 7. – P. 1157–1167.
27. CpG oligodeoxynucleotides stimulate IFN-gamma-inducible protein-10 production in human B cells / J. Vollmer [et al.] // J. Endotoxin Res. – 2004. – Vol. 10, N 6. – P. 431–438.
28. Selected TLR agonist combinations synergistically trigger a TH1 polarizing program in dendritic cells / G. Napolitani [et al.] // Nat. Immunol. – 2005. – Vol. 6. – P. 769–776.
29. Klinman, D. M. Use of CpG oligodeoxynucleotides as immunoprotective agents / D. M. Klinman // Expert Opin. Biol. Ther. – 2004. – Vol. 4, N 6. – P. 937–946.
30. Use of CpG oligodeoxynucleotides as immune adjuvants / D. M. Klinman [et al.] // Immunol. Rev. – 2004. – Vol. 199. – P. 201–216.
31. Combination therapy targeting toll like receptors 7, 8 and 9 eliminates large established tumors / B. G. Zhao [et al.] // J. Immunother. Cancer. – 2014. – Vol. 2. – Mode of access: http://www.immunotherapyofcancer.org/content/2/1/12. – Date of access: 15.06.2017.
32. Carpentier, A. F. CpG-oligonucleotides for cancer immunotherapy: review of the literature and potential applications in malignant glioma / A. F. Carpentier, G. Auf, J. Y. Delattre // Front. Biosci. – 2003. – Vol. 8. – P. 115–127.
33. Tokunaga, T. How BCG led to the discovery of immunostimulatory DNA / T. Tokunaga, T. Yamamoto, S. Yamamoto // Jpn J. Infect. Dis. – 1999. – Vol. 52, N 1. – P. 1–11.
34. Krieg, A. M. CpG motifs: the active ingredient in bacterial extracts? / A. M. Krieg // Nat. Med. – 2003. – Vol. 9, N 7. – P. 831–835.
35. Biodistribution and metabolism of internally H-3 labeled oligonucleotides. 2. 3ʹ,5ʹ-blocked oligonucleotides / H. Sands [et al.] // Mol. Pharmacol. – 1995. – Vol. 47. – P. 636–646.
36. Agrawal, S. Antisense therapeutics / S. Agrawal, Q. Y. Zhao // Curr. Opin. Chem. Biol. – 1998. – Vol. 2, N 4. – P. 519–528.
37. Nuclease-resistant immunostimulatory phosphodiester CpG oligodeoxynucleotides as human toll-like receptor 9 agonists / W. J. Meng [et al.] // BMC Biotechnol. – 2011. – Vol. 11.: 88.
38. Zhang, H. Nanodelivery systems for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides / H. Zhang, X. D. Gao // Mat. Sci. Eng.: C. – 2017. – Vol. 70, pt. 2. – P. 935–946.
39. Design of mesoporous silica/cytosine—phosphodiester—guanine oligodeoxynucleotide complexes to enhance delivery efficiency / Y. Zhu [et al.] // J. Phys. Chem. C. – 2011. – Vol. 115, N 2. – P. 447–452.
40. BN nanospheres as CpG ODN carriers for activation of toll-like receptor 9 / C. Y. Zhi [et al.] // J. Materials Chem. – 2011. – Vol. 21, N 14. – P. 5219–5222.
41. Ahlers, J. D. Cytokine, chemokine, and costimulatory molecule modulation to enhance efficacy of HIV vaccines / J. D. Ahlers, I. M. Belyakov, J. A. Berzofsky // Curr. Mol. Med. – 2003. – Vol. 3, N 3. – P. 285–301.
42. CpG oligodeoxynucleotide induction of antiviral effector molecules in sheep / A. K. Nichani [et al.] // Cell. Immunol. – 2004. – Vol. 227, N 1. – P. 24–37.
43. Towards an inhalative in vivo application of immunomodulating gelatin nanoparticles in horse-related preformulation studies / S. Fuchs [et al.] // J. Microencapsul. – 2012. – Vol. 29, N 7. – P. 615–625.
44. Kwong, B. Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy / B. Kwong, H. Liu, D. J. Irvine // Biomaterials. – 2011. – Vol. 32. – P. 5134–5147.
45. Encapsulating immunostimulatory CpG oligonucleotides in Listeriolysin O-liposomes promotes a Th1-type response and CTL activity / C. D. Andrews [et al.] // Mol. Pharm. ‒ 2012. ‒ Vol. 9, N 5. ‒ P. 1118–1125.
46. Preparation of immunostimulatory single-walled carbon nanotube/CpG DNA complexes and evaluation of their potential in cancer immunotherapy / S. Zhou [et al.] // Int. J. Pharm. ‒ 2014. ‒ Vol. 471, N 1/2. ‒ P. 214–223.
47. Uniform small graphene oxide as an efficient cellular nanocarrier for immunostimulatory CpG oligonucleotides / J. Sun [et al.] // ACS Appl. Mater. Interfaces. ‒ 2014. ‒ Vol. 6, N 10. ‒ P. 7926–7932.
48. Gold nanoparticle delivery of modified cpg stimulates macrophages and inhibits tumor growth for enhanced immunotherapy / A.Y. Lin [et al.] // PLoS One. – 2013. – Vol. 8, N 5.: e63550.
49. Tao, W. Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza A virus / W. Tao, K. S. Ziemer, H. S. Gill // Nanomedicine. ‒ 2014. ‒ Vol. 9, N 2. ‒ P. 237‒252.
50. Self-assembly of poly-adenine-tailed CpG oligonucleotide-gold nanoparticle nanoconjugates with immunostimulatory activity / N. Chen [et al.] // Small. ‒ 2014. ‒ Vol. 10, N 2. ‒ P. 368–375.
51. Polyethyleneimine-functionalized boron nitride nanospheres as efficient carriers for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides / H. Zhang [et al.] // Int. J. Nanomedicine. – 2015. – Vol. 10. – P. 5343–5353.
52. Organosilane and polyethylene glycol functionalized magnetic mesoporous silica nanoparticles as carriers for CpG immunotherapy in vitro and in vivo / H. Zheng [et al.] // PLoS One. ‒ 2015. ‒ Vol. 10, N 10.: e0140265.
53. Effect of amino groups of mesoporous silica nanoparticles on CpG oligodexynucleotide delivery / Y. Xu [et al.] // Sci. Technol. Adv. Mater. ‒ 2015. ‒ Vol. 16, N 4.: 045006.
54. Binding of CpG oligodeoxynucleotides to mesoporous silica nanoparticles for enhancing delivery efficiency / C. Tao [et al.] // Micropor. Mesopor. Mater. ‒ 2015. ‒ Vol. 204. ‒ P. 91‒98.
55. Coencapsulation of tumor lysate and CpG-ODN in PLGA-microspheres enables successful immunotherapy of prostate carcinoma in TRAMP mice / M. Mueller [et al.] // J. Control. Rel. – 2012. – Vol. 162. – P. 159–166.
56. Immunization with antigenic peptides complexed with β-glucan induces potent cytotoxic T-lymphocyte activity in combination with CpG-ODNs / S. Mochizuki [et al.] // J. Control. Rel. ‒ 2015. ‒ Vol. 220, N 1. ‒ P. 495–502.
57. Adjuvant activity enhanced by cross-linked CpG-oligonucleotides in β-glucan nanogel and its antitumor effect / N. Miyamoto [et al.] // Bioconjug. Chem. ‒ 2017. ‒ Vol. 28, N 2. ‒ P. 565‒573.
58. Cellular immunostimulation by CpG-sequence-coated DNA origami structures / V. J. Schuller [et al.] // ACS Nano. ‒ 2011. ‒ Vol. 5. ‒ P. 9696–9702.
59. Self-assembling DNA dendrimer for effective delivery of immunostimulatory CpG DNA to immune cells / K. Mohri [et al.] // Biomacromolecules. ‒ 2015. ‒ Vol. 16, N 4. ‒ P. 1095–1101.
60. Biodegradable CpG DNA hydrogels for sustained delivery of doxorubicin and immunostimulatory signals in tumor-bearing mice / M. Nishikawa [et al.] // Biomaterials. ‒ 2011. ‒ Vol. 32, N 2. ‒ P. 488–494.
61. Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery / L. Mei [et al.] // Nano. Res. ‒ 2015. ‒ Vol. 8, N 11. ‒ P. 3447–3460.
62. Strategies for enhancing the immunostimulatory effects of CpG oligodeoxynucleotides / G. K. Mutwiri [et al.] // J. Control. Rel. – 2004. – Vol. 97, N 1. – P. 1–17.
63. Mutwiri, G. S. Approaches to enhancing immune responses stimulated by CpG oligodeoxynucleotides / G. S. Mutwiri, S. van Drunen Littel-van den Hurk, L. A. Babiuk // Adv. Drug Delivery. Rev. – 2009. – Vol. 61, N 3. – P. 226–232.
64. Demoulins, P. Alginate-coated chitosan nanogels differentially modulate class-A and class-B CpG-ODN targeting of dendritic cells and intracellular delivery / T. Demoulins, P. Milona, K. C. McCullough // Nanomedicine. ‒ 2014. ‒ Vol. 10, N 8. ‒ P. 1739‒1749.
65. Hanagata, N. Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system / N. Hanagata // Int. J. Nanomed. – 2012. – Vol. 7. – P. 2181–2195.
66. DNA-inorganic hybrid nanovaccine for cancer immunotherapy / G. Zhu [et al.] // Nanoscale. – 2016. – Vol. 8, N 12. – P. 6684–6692.
67. Xu, Z. P. Layered double hydroxide nanomaterials as potential cellular drug delivery agents / Z. P. Xu, G. Q. Lu // Pure Appl. Chem. – 2006. – Vol. 78, N 9. – P. 1771–1779.
68. Rives, V. Layered double hydroxides as drug carriers and for controlled release of non-steroidal antiinflammatory drugs (NSAIDs): a review / V. Rives, M. del Arco, C. Martin // J. Control. Rel. – 2013. – Vol. 169. – P. 28–39.
69. Comparison of different synthesis routes for Mg–Al layered double hydroxides (LDH): Characterization of the structural phases and anion exchange properties / H. W. Olfs [et al.] // Appl. Clay Sci. – 2009. – Vol. 43, N 3/4. – P. 459–464.
70. Theiss, F. L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods / F. L. Theiss, G. A. Ayoko, R. L. Frost // Appl. Surf. Sci. – 2016. – Vol. 383. – P. 200–213.
71. Intercalation of nucleotides into layered double hydroxides by ion-exchange reaction / S. Aisawa [et al.] // Appl. Clay Sci. – 2005. – Vol. 28, N 1/4. – P. 137–145.
72. Bio-LDH nanohybrid for gene therapy / S. Y. Kwak [et al.] // Solid State Ionics. ‒ 2002. ‒ Vol. 151. ‒ P. 229–234.
73. Layered double hydroxide nanoparticles as cellular delivery vectors of supercoiled plasmid DNA / Z. P. Xu [et al.] // Int. J. Nanomed. – 2007. – Vol. 2, N 2. – P. 163–174.
74. Anticancer drug-inorganic nanohybrid and its cellular interaction / J. Y. Kim [et al.] // J. Nanosci. Nanotechnol. ‒ 2007. ‒ Vol. 7, N 11. ‒ P. 3700‒3705.
75. The effects of intralayer metal composition of layered double hydroxides on glass transition, dispersion, thermal and fire properties of their PMMA nanocomposites / C. Manzi-Nshuti [et al.] // Thermochim. Acta. – 2009. – Vol. 495, N 1/2. – P. 63–71.
76. Augmentation of cellular immune responses to bovine herpesvirus-1 glycoprotein D by vaccination with CpG-enhanced plasmid vectors / R. A. Pontarollo [et al.] // J. Gen. Virol. – 2002. – Vol. 83. – P. 2973–2981.
77. Adjuvant effect of multi-CpG motifs on an HIV-1 DNA vaccine / Y. Kojima [et al.] // Vaccine. – 2002. – Vol. 20, N 23/24. – P. 2857–2865.
78. Juvaris BioTherapeutics announces positive data from clinical trial of JVRS-100 adjuvanted flu vaccine [Electronic resource] // Juvaris BioTherapeutics, Inc. – Mode of access: http://www.juvaris.com/news/press/09_01_08.html. – Date of access: 18.05.2017.
79. Effects of herpes simplex virus type 2 glycoprotein vaccines and CLDC adjuvant on genital herpes infection in the guinea pig / D. I. Bernstein [et al.] // Vaccine. – 2011. – Vol. 29, N 11. – P. 2071–2078.
80. Breaking B and T cell tolerance using cationic lipid-DNA complexes (CLDC) as a vaccine adjuvant with hepatitis B virus (HBV) surface antigen in transgenic mice expressing HBV / J. D. Morreya [et al.] // Antiviral Res. – 2011. – Vol. 90, N 3. – P. 227–230.
81. Cationic liposome–DNA complexes (CLDC) adjuvant enhances the immunogenicity and cross-protective efficacy of a pre-pandemic influenza A H5N1 vaccine in mice / L. Dong [et al.] // Vaccine. – 2012. – Vol. 30. – P. 254–264.
82. Efficacy of influenza vaccination of elderly Rhesus Macaques is dramatically improved by addition of a cationic lipid/DNA adjuvant / T. D. Carroll [et al.] // J. Infect. Dis. – 2014. – Vol. 209, N 1. – P. 24–33.
83. Zinchenko, A. I. Construction of plasmid enriched with immunostimulatory CpG motifs / A. I. Zinchenko, S. V. Kvach, A. S. Shchokolova // East. Eur. Sci. J. – 2014. – N 3. – P. 10–13.
84. Щеколова, А. С. Разработка биотехнологических способов получения иммуностимуляторов нуклеиновой природы – CpG-ДНК и цикло-диГМФ : автореф. … дис. канд. биол. наук : 03.01.06 / А. С Щеколова ; Нац. акад. наук Беларуси, Ин-т микробиологии. – Минск, 2014. – 24 с.
85. Hanagata, N. CpG oligodeoxynucleotide nanomedicines for the prophylaxis or treatment of cancers, infectious diseases, and allergies / N. Hanagata // Int. J. Nanomed. – 2017. – Vol. 12. – P. 515–531.
86. Design and structural requirements of the potent and safe TLR-9 agonistic immunomodulator MGN1703 / M. Schmidt [et al.] // Nucleic Acid Ther. ‒ 2015. ‒ Vol. 25, N 3. ‒ P. 130–140.
87. Randomized phase III trial of paclitaxel/carboplatin with or without PF-3512676 (Toll-like receptor 9 agonist) as first-line treatment for advanced non-small-cell lung cancer / V. Hirsh [et al.] // J. Clin. Oncol. ‒ 2011. ‒ Vol. 29, N 19. ‒ P. 2667–2674.
88. A phase III randomized study of gemcitabine and cisplatin with or without PF-3512676 (TLR9 agonist) as first-line treatment of advanced non-small-cell lung cancer / C. Manegold [et al.] // Ann. Oncol. ‒ 2012. ‒ Vol. 23, N 1. ‒ P. 72–77.
89. Co-delivery of drug and DNA from cationic dual-responsive micelles derived from poly(DMAEMA-co-PPGMA) / X. J. Loh [et al.] // Mater. Sci. Eng. C Mater. Biol. Appl. – 2013. – Vol. 33, N 8. – P. 4545–4550.
90. Biodegradable microparticles loaded with doxorubicin and CpG ODN for in situ immunization against cancer / A. Makkouk [et al.] // AAPS J. – 2015. – Vol. 17, N 1. – P. 184–193.
91. Simultaneous delivery of doxorubicin and immunostimulatory CpG motif to tumors using a plasmid DNA/doxorubicin complex in mice / Y. Mizuno [et al.] // J. Control. Rel. – 2010. – Vol. 141, N 2. – P. 252–259.
92. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study / J. D. Brody [et al.] // J. Clin. Oncol. ‒ 2010. ‒ Vol. 28, N 28. ‒ P. 4324–4332.
93. Intratumoral immunization: a new paradigm for cancer therapy / A. Marabelle [et al.] // Clin. Cancer Res. ‒ 2014. ‒ Vol. 20, N 7. ‒ P. 1747‒1756.
94. In-situ tumor vaccination: bringing the fight to the tumor / R. H. Pierce [et al.] // Hum. Vaccines Immunother. – 2015. – Vol. 11, N 8. – P. 1901–1909.
95. Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense / X. Hu [et al.] // J. Control. Rel. ‒ 2017. ‒ Vol. 256. ‒ P. 26‒45.