Preview

Известия Национальной академии наук Беларуси. Серия биологических наук

Расширенный поиск

CpG-ОЛИГОДЕЗОКСИНУКЛЕОТИДЫ И ИХ ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ

Аннотация

Бактериальные ДНК (в том числе плазмиды) и синтетические олиго-2ʹ-дезоксинуклеотиды, содержащие неметилированные CpG-динуклеотиды (CpG-ОДН), при введении в организм человека и животных стимулируют как врожденные, так и адаптивные иммунные ответы. В связи с этим терапевтическое применение CpG-ОДН против инфекционных, онкологических и аллергических заболеваний является весьма перспективным. Однако молекулы CpG-ОДН заряжены отрицательно и поэтому с трудом проникают через клеточные мембраны, имеющие аналогичный поверхностный заряд. Кроме того, природные CpG-ОДН легко расщепляются нуклеазами. Одним из эффективных способов защиты CpG-ОДН от деградации нуклеазами является химическая модификация их сахарофосфатного скелета. В то же время известны случаи, когда введение таких модифицированных молекул приводило к серьезным побочным эффектам. Все эти обстоятельства существенно ограничивают терапевтическое применение CpG-ОДН и подогревают интерес к поиску эффективных систем доставки CpG-ОДН в ткани и клетки-мишени.

Наблюдаемый в последние годы существенный прогресс в области нанобиотехнологий предоставил беспрецедентные возможности для инкапсулирования лекарственных субстанций (в том числе CpG-ОДН) в различные наноразмерные транспортные системы, а также для синтеза из CpG-ОДН разнообразных по форме наноразмерных структур. При использовании таких систем доставки значительно повышается как стабильность CpG-ОДН, так и степень их интернализации в клетки-мишени. Кроме того, применение таких транспортных наносистем, возможно, позволит отказаться от вызывающей побочные эффекты химической модификации CpG-ОДН. 

Об авторах

А. И. Зинченко
Институт микробиологии НАН Беларуси, Минск
Беларусь

член-корреспондент, д-р биол. наук, профессор, заведующий лабораторией

ул. Купревича, 2, 220141



А. С. Щеколова
Институт микробиологии НАН Беларуси, Минск
Беларусь

канд. биол. наук, ст. науч. сотрудник

ул. Купревича, 2, 220141



Список литературы

1. Medzhitov, R. Innate immunity: the virtues of a nonclonal system of recognition / R. Medzhitov, C. A. Janeway // Cell. – 1997. – Vol. 91. – P. 295–298.

2. Janeway, C. A. Innate immune recognition / C. A. Janeway, R. Medzhitov // Annu. Rev. Immunol. – 2002. – Vol. 20. – P. 197–216.

3. Aderem, A. Toll-like receptors in the induction of the innate immune response / A. Aderem, R. J. Ulevitch // Nature. – 2000. – Vol. 406. – P. 782–787.

4. Hobohm, U. Pathogen-associated molecular pattern in cancer immunotherapy / U. Hobohm, J. L. Stanford, J. M. Grange // Crit. Rev. Immunol. – 2008. – Vol. 28, N 2. – P. 95–107.

5. Pathogen-associated molecular patterns induced crosstalk between dendritic cells, T helper cells, and natural killer helper cells can improve dendritic cell vaccination / T. Oth [et al.] // Mediat. Inflam. – 2016. – Vol. 2016:5740373.

6. CpG motifs in bacterial DNA trigger direct B-cell activation / A. M. Krieg [et al.] // Nature. – 1995. – Vol. 374. – P. 546–549.

7. Krieg, A. M. Therapeutic potential of toll-like receptor 9 activation / A. M. Krieg // Nat. Rev. Drug Discov. – 2006. – Vol. 5. – P. 471–484.

8. Krieg, A. M. Mechanisms and applications of immune stimulatory CpG oligodeoxynucleotides / A. M. Krieg // BBAGene Struct. Expr. – 1999. – Vol. 1489. – P. 107–116.

9. Jain, V. V. CpG DNA and immunotherapy of allergic airway diseases / V. V. Jain, K. Kitagaki, J. N. Kline // Clin. Exp. Allergy. – 2003. – Vol. 33, N 10. – P. 1330–1335.

10. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition / S. Bauer [et al.] // Proc. Natl. Acad. Sci. USA. – 2001. – Vol. 98, N 16. – P. 9237–9242.

11. Krieg, A. M. CpG motifs in bacterial DNA and their immune effects / A. M. Krieg // Annu. Rev. Immunol. – 2002. – Vol. 20. – P. 709–760.

12. Klinman, D. M. Immunotherapeutic uses of CpG oligodeoxynucleotides / D. M. Klinman // Nat. Rev. Immunol. – 2004. – Vol. 4, N 4. – P. 249–258.

13. Immune mechanisms and therapeutic potential of CpG oligodeoxynucleotides / H. L. Wilson [et al.] // Int. Rev. Immunol. – 2006. – Vol. 25, N 3/4. – P. 183–213.

14. Stacey, K. J. Macrophages ingest and are activated by bacterial DNA / K. J. Stacey, M. J. Sweet, D. A. Hume // J. Immunol. – 1996. – Vol. 157, N 5. – P. 2116–2122.

15. Type I interferon-mediated stimulation of T cells by CpG DNA / S. Q. Sun [et al.] // J. Exp. Med. – 1998. – Vol. 188. – P. 2335–2342.

16. Fonseca, D. E. Use of CpG oligodeoxynucleotides in treatment of asthma and allergic disease / D. E. Fonseca, J. N. Kline // Adv. Drug Delivery. Rev. – 2009. – Vol. 61. – P. 256–262.

17. CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases / D. M. Klinman [et al.] // Adv. Drug Delivery. Rev. – 2009. – Vol. 61, N 3. – P. 248–255.

18. Murad, Y. M. CpG oligodeoxynucleotides as TLR9 agonists: therapeutic applications in cancer / Y. M. Murad, T. M. Clay // BioDrugs. – 2009. – Vol. 23, N 6. – P. 361–375.

19. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation / H. Hacker [et al.] // EMBO J. – 1998. – Vol. 17, N 21. – P. 6230–6240.

20. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner / M. Rutz [et al.] // Eur. J. Immunol. – 2004. – Vol. 34, N 9. – P. 2541–2550.

21. Rapid immune activation by CpG motifs in bacterial DNA: systemic induction of IL-6 transcription through an antioxidant-sensitive pathway / A. K. Yi [et al.] // J. Immunol. – 1996. – Vol. 157, N 12. – P. 5394–5402.

22. Cyclosporin A enhances IL-12 production by CpG motifs in bacterial DNA and synthetic oligodeoxynucleotides / T. W. Redford [et al.] // J. Immunol. – 1998. – Vol. 161, N 8. – P. 3930–3935.

23. Akira, S. Pathogen recognition and innate immunity / S. Akira, S. Uematsu, O. Takeuchi // Cell. – 2006. – Vol. 124, N 4. – P. 783–801.

24. Distinct response of human B cell subpopulations in recognition of an innate immune signal, CpG DNA / J. Jung [et al.] // J. Immunol. – 2002. – Vol. 169, N 5. – P. 2368–2373.

25. Bernasconi, N. L. Maintenance of serological memory by polyclonal activation of human memory B cells / N. L. Bernasconi, E. Traggiai, A. Lanzavecchia // Science. – 2002. – Vol. 298. – P. 2199–2202.

26. Type I interferon dependence of plasmacytoid dendritic cell activation and migration / C. Asselin-Paturel [et al.] // J. Exp. Med. – 2005. – Vol. 201, N 7. – P. 1157–1167.

27. CpG oligodeoxynucleotides stimulate IFN-gamma-inducible protein-10 production in human B cells / J. Vollmer [et al.] // J. Endotoxin Res. – 2004. – Vol. 10, N 6. – P. 431–438.

28. Selected TLR agonist combinations synergistically trigger a TH1 polarizing program in dendritic cells / G. Napolitani [et al.] // Nat. Immunol. – 2005. – Vol. 6. – P. 769–776.

29. Klinman, D. M. Use of CpG oligodeoxynucleotides as immunoprotective agents / D. M. Klinman // Expert Opin. Biol. Ther. – 2004. – Vol. 4, N 6. – P. 937–946.

30. Use of CpG oligodeoxynucleotides as immune adjuvants / D. M. Klinman [et al.] // Immunol. Rev. – 2004. – Vol. 199. – P. 201–216.

31. Combination therapy targeting toll like receptors 7, 8 and 9 eliminates large established tumors / B. G. Zhao [et al.] // J. Immunother. Cancer. – 2014. – Vol. 2. – Mode of access: http://www.immunotherapyofcancer.org/content/2/1/12. – Date of access: 15.06.2017.

32. Carpentier, A. F. CpG-oligonucleotides for cancer immunotherapy: review of the literature and potential applications in malignant glioma / A. F. Carpentier, G. Auf, J. Y. Delattre // Front. Biosci. – 2003. – Vol. 8. – P. 115–127.

33. Tokunaga, T. How BCG led to the discovery of immunostimulatory DNA / T. Tokunaga, T. Yamamoto, S. Yamamoto // Jpn J. Infect. Dis. – 1999. – Vol. 52, N 1. – P. 1–11.

34. Krieg, A. M. CpG motifs: the active ingredient in bacterial extracts? / A. M. Krieg // Nat. Med. – 2003. – Vol. 9, N 7. – P. 831–835.

35. Biodistribution and metabolism of internally H-3 labeled oligonucleotides. 2. 3ʹ,5ʹ-blocked oligonucleotides / H. Sands [et al.] // Mol. Pharmacol. – 1995. – Vol. 47. – P. 636–646.

36. Agrawal, S. Antisense therapeutics / S. Agrawal, Q. Y. Zhao // Curr. Opin. Chem. Biol. – 1998. – Vol. 2, N 4. – P. 519–528.

37. Nuclease-resistant immunostimulatory phosphodiester CpG oligodeoxynucleotides as human toll-like receptor 9 agonists / W. J. Meng [et al.] // BMC Biotechnol. – 2011. – Vol. 11.: 88.

38. Zhang, H. Nanodelivery systems for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides / H. Zhang, X. D. Gao // Mat. Sci. Eng.: C. – 2017. – Vol. 70, pt. 2. – P. 935–946.

39. Design of mesoporous silica/cytosine—phosphodiester—guanine oligodeoxynucleotide complexes to enhance delivery efficiency / Y. Zhu [et al.] // J. Phys. Chem. C. – 2011. – Vol. 115, N 2. – P. 447–452.

40. BN nanospheres as CpG ODN carriers for activation of toll-like receptor 9 / C. Y. Zhi [et al.] // J. Materials Chem. – 2011. – Vol. 21, N 14. – P. 5219–5222.

41. Ahlers, J. D. Cytokine, chemokine, and costimulatory molecule modulation to enhance efficacy of HIV vaccines / J. D. Ahlers, I. M. Belyakov, J. A. Berzofsky // Curr. Mol. Med. – 2003. – Vol. 3, N 3. – P. 285–301.

42. CpG oligodeoxynucleotide induction of antiviral effector molecules in sheep / A. K. Nichani [et al.] // Cell. Immunol. – 2004. – Vol. 227, N 1. – P. 24–37.

43. Towards an inhalative in vivo application of immunomodulating gelatin nanoparticles in horse-related preformulation studies / S. Fuchs [et al.] // J. Microencapsul. – 2012. – Vol. 29, N 7. – P. 615–625.

44. Kwong, B. Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy / B. Kwong, H. Liu, D. J. Irvine // Biomaterials. – 2011. – Vol. 32. – P. 5134–5147.

45. Encapsulating immunostimulatory CpG oligonucleotides in Listeriolysin O-liposomes promotes a Th1-type response and CTL activity / C. D. Andrews [et al.] // Mol. Pharm. ‒ 2012. ‒ Vol. 9, N 5. ‒ P. 1118–1125.

46. Preparation of immunostimulatory single-walled carbon nanotube/CpG DNA complexes and evaluation of their potential in cancer immunotherapy / S. Zhou [et al.] // Int. J. Pharm. ‒ 2014. ‒ Vol. 471, N 1/2. ‒ P. 214–223.

47. Uniform small graphene oxide as an efficient cellular nanocarrier for immunostimulatory CpG oligonucleotides / J. Sun [et al.] // ACS Appl. Mater. Interfaces. ‒ 2014. ‒ Vol. 6, N 10. ‒ P. 7926–7932.

48. Gold nanoparticle delivery of modified cpg stimulates macrophages and inhibits tumor growth for enhanced immunotherapy / A.Y. Lin [et al.] // PLoS One. – 2013. – Vol. 8, N 5.: e63550.

49. Tao, W. Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza A virus / W. Tao, K. S. Ziemer, H. S. Gill // Nanomedicine. ‒ 2014. ‒ Vol. 9, N 2. ‒ P. 237‒252.

50. Self-assembly of poly-adenine-tailed CpG oligonucleotide-gold nanoparticle nanoconjugates with immunostimulatory activity / N. Chen [et al.] // Small. ‒ 2014. ‒ Vol. 10, N 2. ‒ P. 368–375.

51. Polyethyleneimine-functionalized boron nitride nanospheres as efficient carriers for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides / H. Zhang [et al.] // Int. J. Nanomedicine. – 2015. – Vol. 10. – P. 5343–5353.

52. Organosilane and polyethylene glycol functionalized magnetic mesoporous silica nanoparticles as carriers for CpG immunotherapy in vitro and in vivo / H. Zheng [et al.] // PLoS One. ‒ 2015. ‒ Vol. 10, N 10.: e0140265.

53. Effect of amino groups of mesoporous silica nanoparticles on CpG oligodexynucleotide delivery / Y. Xu [et al.] // Sci. Technol. Adv. Mater. ‒ 2015. ‒ Vol. 16, N 4.: 045006.

54. Binding of CpG oligodeoxynucleotides to mesoporous silica nanoparticles for enhancing delivery efficiency / C. Tao [et al.] // Micropor. Mesopor. Mater. ‒ 2015. ‒ Vol. 204. ‒ P. 91‒98.

55. Coencapsulation of tumor lysate and CpG-ODN in PLGA-microspheres enables successful immunotherapy of prostate carcinoma in TRAMP mice / M. Mueller [et al.] // J. Control. Rel. – 2012. – Vol. 162. – P. 159–166.

56. Immunization with antigenic peptides complexed with β-glucan induces potent cytotoxic T-lymphocyte activity in combination with CpG-ODNs / S. Mochizuki [et al.] // J. Control. Rel. ‒ 2015. ‒ Vol. 220, N 1. ‒ P. 495–502.

57. Adjuvant activity enhanced by cross-linked CpG-oligonucleotides in β-glucan nanogel and its antitumor effect / N. Miyamoto [et al.] // Bioconjug. Chem. ‒ 2017. ‒ Vol. 28, N 2. ‒ P. 565‒573.

58. Cellular immunostimulation by CpG-sequence-coated DNA origami structures / V. J. Schuller [et al.] // ACS Nano. ‒ 2011. ‒ Vol. 5. ‒ P. 9696–9702.

59. Self-assembling DNA dendrimer for effective delivery of immunostimulatory CpG DNA to immune cells / K. Mohri [et al.] // Biomacromolecules. ‒ 2015. ‒ Vol. 16, N 4. ‒ P. 1095–1101.

60. Biodegradable CpG DNA hydrogels for sustained delivery of doxorubicin and immunostimulatory signals in tumor-bearing mice / M. Nishikawa [et al.] // Biomaterials. ‒ 2011. ‒ Vol. 32, N 2. ‒ P. 488–494.

61. Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery / L. Mei [et al.] // Nano. Res. ‒ 2015. ‒ Vol. 8, N 11. ‒ P. 3447–3460.

62. Strategies for enhancing the immunostimulatory effects of CpG oligodeoxynucleotides / G. K. Mutwiri [et al.] // J. Control. Rel. – 2004. – Vol. 97, N 1. – P. 1–17.

63. Mutwiri, G. S. Approaches to enhancing immune responses stimulated by CpG oligodeoxynucleotides / G. S. Mutwiri, S. van Drunen Littel-van den Hurk, L. A. Babiuk // Adv. Drug Delivery. Rev. – 2009. – Vol. 61, N 3. – P. 226–232.

64. Demoulins, P. Alginate-coated chitosan nanogels differentially modulate class-A and class-B CpG-ODN targeting of dendritic cells and intracellular delivery / T. Demoulins, P. Milona, K. C. McCullough // Nanomedicine. ‒ 2014. ‒ Vol. 10, N 8. ‒ P. 1739‒1749.

65. Hanagata, N. Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system / N. Hanagata // Int. J. Nanomed. – 2012. – Vol. 7. – P. 2181–2195.

66. DNA-inorganic hybrid nanovaccine for cancer immunotherapy / G. Zhu [et al.] // Nanoscale. – 2016. – Vol. 8, N 12. – P. 6684–6692.

67. Xu, Z. P. Layered double hydroxide nanomaterials as potential cellular drug delivery agents / Z. P. Xu, G. Q. Lu // Pure Appl. Chem. – 2006. – Vol. 78, N 9. – P. 1771–1779.

68. Rives, V. Layered double hydroxides as drug carriers and for controlled release of non-steroidal antiinflammatory drugs (NSAIDs): a review / V. Rives, M. del Arco, C. Martin // J. Control. Rel. – 2013. – Vol. 169. – P. 28–39.

69. Comparison of different synthesis routes for Mg–Al layered double hydroxides (LDH): Characterization of the structural phases and anion exchange properties / H. W. Olfs [et al.] // Appl. Clay Sci. – 2009. – Vol. 43, N 3/4. – P. 459–464.

70. Theiss, F. L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods / F. L. Theiss, G. A. Ayoko, R. L. Frost // Appl. Surf. Sci. – 2016. – Vol. 383. – P. 200–213.

71. Intercalation of nucleotides into layered double hydroxides by ion-exchange reaction / S. Aisawa [et al.] // Appl. Clay Sci. – 2005. – Vol. 28, N 1/4. – P. 137–145.

72. Bio-LDH nanohybrid for gene therapy / S. Y. Kwak [et al.] // Solid State Ionics. ‒ 2002. ‒ Vol. 151. ‒ P. 229–234.

73. Layered double hydroxide nanoparticles as cellular delivery vectors of supercoiled plasmid DNA / Z. P. Xu [et al.] // Int. J. Nanomed. – 2007. – Vol. 2, N 2. – P. 163–174.

74. Anticancer drug-inorganic nanohybrid and its cellular interaction / J. Y. Kim [et al.] // J. Nanosci. Nanotechnol. ‒ 2007. ‒ Vol. 7, N 11. ‒ P. 3700‒3705.

75. The effects of intralayer metal composition of layered double hydroxides on glass transition, dispersion, thermal and fire properties of their PMMA nanocomposites / C. Manzi-Nshuti [et al.] // Thermochim. Acta. – 2009. – Vol. 495, N 1/2. – P. 63–71.

76. Augmentation of cellular immune responses to bovine herpesvirus-1 glycoprotein D by vaccination with CpG-enhanced plasmid vectors / R. A. Pontarollo [et al.] // J. Gen. Virol. – 2002. – Vol. 83. – P. 2973–2981.

77. Adjuvant effect of multi-CpG motifs on an HIV-1 DNA vaccine / Y. Kojima [et al.] // Vaccine. – 2002. – Vol. 20, N 23/24. – P. 2857–2865.

78. Juvaris BioTherapeutics announces positive data from clinical trial of JVRS-100 adjuvanted flu vaccine [Electronic resource] // Juvaris BioTherapeutics, Inc. – Mode of access: http://www.juvaris.com/news/press/09_01_08.html. – Date of access: 18.05.2017.

79. Effects of herpes simplex virus type 2 glycoprotein vaccines and CLDC adjuvant on genital herpes infection in the guinea pig / D. I. Bernstein [et al.] // Vaccine. – 2011. – Vol. 29, N 11. – P. 2071–2078.

80. Breaking B and T cell tolerance using cationic lipid-DNA complexes (CLDC) as a vaccine adjuvant with hepatitis B virus (HBV) surface antigen in transgenic mice expressing HBV / J. D. Morreya [et al.] // Antiviral Res. – 2011. – Vol. 90, N 3. – P. 227–230.

81. Cationic liposome–DNA complexes (CLDC) adjuvant enhances the immunogenicity and cross-protective efficacy of a pre-pandemic influenza A H5N1 vaccine in mice / L. Dong [et al.] // Vaccine. – 2012. – Vol. 30. – P. 254–264.

82. Efficacy of influenza vaccination of elderly Rhesus Macaques is dramatically improved by addition of a cationic lipid/DNA adjuvant / T. D. Carroll [et al.] // J. Infect. Dis. – 2014. – Vol. 209, N 1. – P. 24–33.

83. Zinchenko, A. I. Construction of plasmid enriched with immunostimulatory CpG motifs / A. I. Zinchenko, S. V. Kvach, A. S. Shchokolova // East. Eur. Sci. J. – 2014. – N 3. – P. 10–13.

84. Щеколова, А. С. Разработка биотехнологических способов получения иммуностимуляторов нуклеиновой природы – CpG-ДНК и цикло-диГМФ : автореф. … дис. канд. биол. наук : 03.01.06 / А. С Щеколова ; Нац. акад. наук Беларуси, Ин-т микробиологии. – Минск, 2014. – 24 с.

85. Hanagata, N. CpG oligodeoxynucleotide nanomedicines for the prophylaxis or treatment of cancers, infectious diseases, and allergies / N. Hanagata // Int. J. Nanomed. – 2017. – Vol. 12. – P. 515–531.

86. Design and structural requirements of the potent and safe TLR-9 agonistic immunomodulator MGN1703 / M. Schmidt [et al.] // Nucleic Acid Ther. ‒ 2015. ‒ Vol. 25, N 3. ‒ P. 130–140.

87. Randomized phase III trial of paclitaxel/carboplatin with or without PF-3512676 (Toll-like receptor 9 agonist) as first-line treatment for advanced non-small-cell lung cancer / V. Hirsh [et al.] // J. Clin. Oncol. ‒ 2011. ‒ Vol. 29, N 19. ‒ P. 2667–2674.

88. A phase III randomized study of gemcitabine and cisplatin with or without PF-3512676 (TLR9 agonist) as first-line treatment of advanced non-small-cell lung cancer / C. Manegold [et al.] // Ann. Oncol. ‒ 2012. ‒ Vol. 23, N 1. ‒ P. 72–77.

89. Co-delivery of drug and DNA from cationic dual-responsive micelles derived from poly(DMAEMA-co-PPGMA) / X. J. Loh [et al.] // Mater. Sci. Eng. C Mater. Biol. Appl. – 2013. – Vol. 33, N 8. – P. 4545–4550.

90. Biodegradable microparticles loaded with doxorubicin and CpG ODN for in situ immunization against cancer / A. Makkouk [et al.] // AAPS J. – 2015. – Vol. 17, N 1. – P. 184–193.

91. Simultaneous delivery of doxorubicin and immunostimulatory CpG motif to tumors using a plasmid DNA/doxorubicin complex in mice / Y. Mizuno [et al.] // J. Control. Rel. – 2010. – Vol. 141, N 2. – P. 252–259.

92. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study / J. D. Brody [et al.] // J. Clin. Oncol. ‒ 2010. ‒ Vol. 28, N 28. ‒ P. 4324–4332.

93. Intratumoral immunization: a new paradigm for cancer therapy / A. Marabelle [et al.] // Clin. Cancer Res. ‒ 2014. ‒ Vol. 20, N 7. ‒ P. 1747‒1756.

94. In-situ tumor vaccination: bringing the fight to the tumor / R. H. Pierce [et al.] // Hum. Vaccines Immunother. – 2015. – Vol. 11, N 8. – P. 1901–1909.

95. Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense / X. Hu [et al.] // J. Control. Rel. ‒ 2017. ‒ Vol. 256. ‒ P. 26‒45.


Рецензия

Просмотров: 682


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)