Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

INFLUENCE OF 5-AMINOLEVULINIC ACID ON THE PRODUCTIVITY AND PIGMENT COMPOSITION OF ALGAE HAEMATOCOCCUS PLUVIALIS

Abstract

Influence of exogenous 5-aminolevulinic acid (ALA) on the algae Haematococcus pluvialis productivity – dry weight, number and size of cells as well as proteins and photosynthetic pigment content has been studied. Growing of algae cells in Rudic’s medium with supplementation of ALA (0.5; 5; 10; 20 and 30 mg/l) stimulated accumulation of cell dry weight during active algae growth as compared with control cells as well as with initial algae culture. So, for two days of algae incubation with ALA 10 mg/l the dry weight increased by an average of 31 % in relation to initial culture and by 17 % in relation to control. A dose-dependent increase in content of cell number by an average of 26 % and decrease of cell diameter by 15 % was registered in “ALA” variants as compared with these characteristics in control. After 7 days of incubation with ALA content of the photosynthetic pigments and proteins increased. So, content of chlorophylls a, b and β-carotene per g of dry matter exceeded the control values by 37, 37 and 58 %, respectively. For xanthophylls such as neoxanthin, violaxanthin and lutein – by 31, 30 and 47 %, respectively. While the protein content on average increased by 20–73 %. After 12 days of incubation, the effectiveness of ALA decreased while maintaining the above trend. The results are discussed from the position of using exogenous ALA in the synthesis of endogenous cytokinins that stimulated the growth and development of algal cells, as well as the formation of the pigmentary apparatus of photosynthesis. 

About the Authors

N. G. Averina
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk
Belarus

D. Sc. (Biol.), Professor, Chief researcher

27, Akademicheskaya Str., 220072



R. A. Sherbakov
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk
Belarus

Ph. D. (Biol.), Researcher

27, Akademicheskaya Str., 220072



N. V. Kozel
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk
Belarus

Ph. D. (Biol.), Senior researcher

27, Akademicheskaya Str., 220072



E. E. Manankina
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk
Belarus

Ph. D. (Biol.), Researcher

27, Akademicheskaya Str., 220072



R. G. Goncharik
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk
Belarus

Junior researcher

27, Akademicheskaya Str., 220072



N. V. Shalygo
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk
Belarus

Corresponding Member, D. Sc. (Biol.), Associate Professor, Head of the Laboratory

27, Akademicheskaya Str., 220072



References

1. Shimidzu N., Goto M., Miki W. Carotenoids as singlet oxygen quenchers in marine organisms. Fisheries Science, 1996, vol. 62, no. 1, pp. 134–137.

2. Hussein G., Sankawa U., Goto H., Matsumoto K., Watanabe H. Astaxanthin, a carotenoid with potential in human health and nutrition. Journal of Natural Products, 2006, vol. 69, no. 3, pp. 443–449. DOI: 10.1021/np050354+

3. Johnson E. A., Schroeder W. A. Microbial carotenoids. Advances in Biochemical Engineering/Biotechnology, 1996, vol. 53, pp. 119–178.

4. Krishna K. B., Mohanty P. Secondary carotenoid production in green algae. Journal of Scientific and Industrial Research, 1998, vol. 57, pp. 51–63.

5. Guerin M., Huntley M. E., Olaizola M. Haematococcus astaxanthin: applications for human health and nutrition. Trends in Biotechnology, 2003, vol. 21, no. 5, pp. 210–216. DOI: 10.1016/S0167-7799(03)00078-7

6. Higuera-Ciapara I., Felix-Valenzuela L., Goycoolea Higuera-Ciapara F. Astaxanthin: a review of its chemistry and applications. Critical Reviews in Food Science and Nutrition, 2006, vol. 46, no. 2, pp. 185–196. DOI: 10.1080/10408690590957188

7. Yuan J-P., Chen F. Identification of astaxanthin isomers in Haematococcus lacustris by HPLC-photodiode array detection. Biotechnology Techniques, 1997, vol. 11, no. 7, pp. 455–459.

8. Cifuentes A. S., González M. A., Vargas S., Hoeneisen M., González N. Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions. Biological Research, 2003, vol. 36, pp. 343–357.

9. Chunmei H., Jianguo L., Yong Z. Cell growth and astaxanthin accumulation of four strains of Haematococcus pluvialis exposed to different plant regulators. Oceanologia et Limologia Sinica, 2006, vol. 40, no. 4, pp. 430–436.

10. Raposo M., de Morais R. M. Influence of the growth regulators kinetin and 2,4-D on the growth of two chlorophyte microalgae, Haematococcus pluvialis and Dunaliella salina. Journal of Basic and Applied Sciences, 2013, vol. 9, pp. 302–308.

11. Gao Z., Meng C., Gao H., Zhang X., Xu D., Su Y., Wang Y., Zhao Y., Ye N. Analysis of mRNA expression profiles of carotenogenesis and astaxanthin production of Haematococcus pluvialis under exogenous 2,4-epibrassinolide (EBR). Biological Research, 2013, vol. 46, no. 2, pp. 201–206. DOI: 10.4067/S0716-97602013000200012

12. Averina N. G., Iaronskaia E. B. The study of the effect of 5-aminolevulinic acid on the growth of barley plants. Fiziologiia rastenii [Plant Physiology], 1988, vol. 35, no. 5, pp. 916–920 (in Russian).

13. Averina N. G., Yaronskaya E. B. Involvement of 5-aminolevulinic acid in the regulation of plant growth. Photosynthetica, 1991, vol. 25, no. 1, pp. 27–31.

14. Averina N. G., Yaronskaya E. B. Biosynthesis of tetrapyrroles in plants. Minsk, Belarusian Science, 2012. 413 p. (in Russian).

15. Yaronskaya E. B., Vershilovskaia I. V., Averina N. G. The content of zeatin and its derivatives in barley sprouts (Hordeum vulgaris L.) with an increased level of 5-aminolevulinic acid. Vestsі Natsyianal’nai Akademіі navuk Belarusі. Seryia bіialagіchnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Biological series, 2004, no. 3, pp. 70–73 (in Russian).

16. Averina N. G., Gritskevich E. R., Vershilovskaya I. V., Usatov A. V., Yaronskaya E. B. Mechanisms of salt stress tolerance development in barley plants under the influence of 5-aminolevulinic acid. Russian Journal of Plant Physiology, 2010, vol. 57, no. 6, pp. 792–798.

17. Beyzaei Z., Sherbakov R. A., Averina N. G. Response of nitrate reductase to exogenous application of 5-aminolevulinic acid in barley plants. Journal of Plant Growth Regulation, 2014, vol. 33, no. 4, pp. 745–750. DOI: 10.1007/s00344-014-9422-4

18. Sasaki K., Marquez F. J., Nishio N., Nagai S. Promotive effect of 5-aminolevulinic acid on the growth and photosynthesis of Spirulina platensis. Journal of Fermentation and Bioengineering, 1995, vol. 79, no. 5, pp. 453–457.

19. Jie, L. Effect of 5-Aminolevulinic acid on algae growth and product accumulation, Master’s Thesis. Hangzhou, Zhejiang University, 2013. 67 p.

20. Catalog of the genetic fund of economically useful species of algae, compilers: Mel’nikov S. S., Manankina E. E., Budakova E. F., Shalygo N. V. Minsk, Belarusian science, 2011. 101 p. (in Russian).

21. Nichols H. W., Bold H. C. Trichosarcina polymorpha gen. et sp. nov. Journal of Phycology, 1965, vol. 1, pp. 34–38. DOI: 10.1111/j.1529-8817.1965.tb04552.x

22. Imamoglu E., Dalay M. C., Sukan F. V. Influences of different stress media and high light intensities on accumulation of Astaxanthin in the green alga Haematococcus pluvialis. New Biotechnology, 2009, vol. 26, no. 3/4, pp. 199–204. DOI: 10.1016/j.nbt.2009.08.007

23. Imamoglu E., Sukan F. V., Dalay M. C. Effect of different culture media and light intensities on growth of Haematococcus pluvialis. International Journal of Natural & Engineering Sciences, 2007, vol. 1, no. 3, pp. 5–9.

24. Sidorenko L. F., Sakevich A. I., Osipov L. F., Lukina l. F., Kuzmenko M. I., Kozitskaia V. N., Velichko I. M., Myslovich V. O., Gavrilenko V. Y., Arendarchuk V. V., Kirpenko U. A. Methods of physiological and biochemical study of algae in hydrobiological practice. Kiev, Scientific thought, 1975. 248 p. (in Russian).

25. Katsuda T., Shimahara K., Shiraishi H., Yamagami K., Ranjbar R., Katoh S. Effect of Flashing light from blue light emitting diodes on cell growth and astaxanthin production of Haematococcus pluvialis. Journal of Bioscience and Bioengineering, 2006, vol. 102, no. 5, pp. 442–446.

26. Rodriguez-Amaya D. B., Kimura M. HarvestPlus handbook for carotenoid analysis. Washington, HarvestPlus, 2004. 63 p.

27. Milenković S. V., Anđelković T. D., Zvezdanović J. B., Marković D. Z. The identification of chlorophyll and its derivatives in the pigment mixtures: HPLC-chromatography, visible and mass spectroscopy studies. Advanced Technologies, 2012, vol. 1, pp. 16–24.

28. Forni E., Ghezzi M., Polesello A. HPLC separation and fluorimetric estimation of chlorophylls and pheophytins in fresh and frozen peas. Chromatography, 2012, vol. 1, pp. 120–124.

29. Olajire A. A., Ameen A. B., Abdul-Hameed M., Adekola F. A. Occurrence and distribution of metals and porphyrins in Nigerian coal minerals. Journal of Fuel Chemistry and Technology, 2007, vol. 35, pp. 641–647.

30. Bradford M. A. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, vol. 72, pp. 248–254.

31. Rokitskii P. F. Biological statistics. Minsk, Graduate school, 1973. 320 p. (in Russian).

32. Hotta Y., Tanaka T., Takaoka H., Takeuchi Y., Konnai M. New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content and plant growth. Bioscience, Biotechnology, and Biochemistry, 1997, vol. 61, no. 12, pp. 2025–2028. DOI:10.1271/bbb.61.2025

33. Hotta Y., Tanaka T., Takaoka H., Takeuchi Y., Konnai M. Promotive effect of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regulation, 1997, vol. 22, pp. 109–114.

34. Roy C. B., Vivekanandan M. Role of aminolevulinic acid in improving biomass production in Vigna catjung, V. mungo, and V. radiata. Biologia Plantarum, 1998, vol. 41, no. 2, pp. 211–215.

35. Melnikov S. S., Manankina E. E., Budakova E. A. Cytokinin activity of chlorella exometabolites. Vestsi akademii navuk BSSR. Seryia biialagichnych navuk = Proceedings of the Academy of Sciences of BSSR, 1988, no. 6, pp. 97–99 (in Russian).

36. Melnikov S. S., Manankina E. E. Biosynthesis of cytokinins by chlorella cells from 5-aminolevulinic acids. Vestsі Natsyianal’nai Akademіі navuk Belarusі. Seryia bіialagіchnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Biological series, 2002, no. 4, pp. 47–49 (in Russian).

37. Stirk W., Drimalova D., Strnad M. Changes in the phytogormones of Сhlorella minutissima on a daily cycle. South African Journal of Botany, 2006, vol. 72, p. 333.

38. Stirk W., Ördög V., J. V. Staden, Jäger K. Cytokinin- and auxin-like activity in Cyanophyta and microalgae. Journal of Appllied Phycology, 2002, vol. 14, pp. 215–221.

39. Miler C. O. Skoog F., Okumura F. S., Von Saltza M. H., Strong F. M. Isolation, structure and synthesis of kinetin, a substance promoting cell division. Journal of the American Chemical Society, 1956, vol. 78, p. 1375.

40. Kulaeva O. N. Cytokinins, their structure and functions. Moscow, Science, 1973. 264 p. (in Russian).


Review

Views: 618


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)