Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

CIRCADIAN RHYTHM AND LIPID METABOLISM IN ANIMAL CELLS. PART I. MOLECULAR AND GENETIC ASPECTS OF THE BIOLOGICAL CLOCK

Abstract

This review (consisting of 2 parts) deals with the subjects of nature, properties, organization and functioning of the circadian rhythm and its importance in the regulation of physiological processes. Molecular and genetic aspects of the biological clock and its interrelation with lipid metabolism are also considered. Metabolic circadian rhythms are among the most important processes in an organism. It is established that there is a direct relationship between synchronicity and the processes of regulation of synthesis, absorption and secretion of lipids. The connection is observed at several levels: biochemical, molecular and genetic. Particular attention is paid to the influence of the circadian rhythm on the functioning and structure of skin and fat tissues which, in its turn, have autonomous circadian oscillators. In this case, the watch genes regulate the activity of numerous tissue-specific genes, thereby translating the daily information into physiologically significant signals. Considerable part of the work is devoted to the issues of desynchronizes, its causes and consequences. Diurnal disorders caused by external or internal factors can lead to disruption of the organism’s regulatory systems, which represents the development of metabolic disorders and tissue damage, which, in turn, can lead to maladaptation of the organism.

About the Authors

I. S. Sobolevskaya
Vitebsk State Medical University
Belarus
Ph. D. (Biol.), Assistant Professor


O. D. Myadelets
Vitebsk State Medical University
Belarus
D. Sc. (Med.), Professor, Head of the Department


E. S. Pashinskaya
Vitebsk State Medical University
Belarus
Ph. D. (Biol.), Assistant Professor


References

1. Halberg F. Chronobiology: methodological problems. Acta medica Romana, 1980, no. 18, pp. 399–440.

2. Semak I. V., Kul’chickij V. A. Physiological and biochemical mechanisms of circadian rhythm regulation. Trudy Belorusskogo gosudarstvennogo universiteta. Serija: Fiziologicheskie, biohimicheskie i molekuljarnye osnovy funkcioni- rovanija system [Proceedings of the Belarusian State University. Series: Physiological, biochemical and molecular basis], Minsk, 2007, vol. 2, part 1, pp. 17–37. (in Russian).

3. Froy O., Chapnik N., Miskin R. Long-lived αMUPA transgenic mice exhibit pronounced circadian rhythms. American Journal of Physiology-Endocrinology and Metabolism, 2006, vol. 291, pp. E1017–E1024. doi: 10.1152/ajpendo.00140.2006.

4. Turek F. W., Joshu C., Kohsaka A., Lin E., Ivanova G., McDearmon E., Laposky A., Losee-Olson S., Easton A., Jensen D. R., Ecke R. H., Takahashi J. S., Bass J. Obesity and metabolic syndrome in circadian Clock mutant mice. Science, 2005, vol. 308, pp. 1043–1045. doi: 10.1126/science.1108750.

5. Shimba Sh., Ishii N., Ohta Y., Ohno T., Watabe Y., Hayashi M., Wada T., Aoyagi T., Tezuka M. Brain and muscle arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2005, vol. 102 (34), pp. 12071–12076.

6. Zamorskij I. I., Myslickij V. F., Pishak V. P. Lateral core of brain septum: morphological and functional organization, role in the formation of chronorrhythms. Uspehi fiziologicheskih nauk [Progress in Physiology], 1998, vol. 29, no. 2, pp. 68–87. (in Russian).

7. Herzog E. D., Takahashi J. S., Block G. D. Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nature Neuroscience, 1998, vol. 1, pp. 708–713.

8. Reppert S. M., Weaver D. R. Coordination of circadian timing in mammals. Nature, 2002, vol. 418, pp. 935–941. doi: 10.1038/nature00965.

9. Lee, Choogon, Etchegaray, Jean-Pierre, Cagampang, Felino R. A., Loudon, Andrew S.I., Reppert, Steven M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell, 2001, vol. 107, pp. 855–867. doi:10.1016/S0092-8674(01)00610-9.

10. Solt L. A., Wang Y., Banerjee S. Hughes T., Kojetin D. J., Lundasen T., Shin Y., Liu J., Cameron M. D., Noel R., Yoo S. H., Takahashi J. S., Butler A. A., Kamenecka T. M., Burris T. P. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature, 2002, vol. 485 (7396), pp. 62–68. doi: 10.1038/nature11030.

11. Havinson V. H., Golubev A. G. Aging of the Pineal Gland. Uspehi gerontologii [Advances in Gerontology], 2002, vol. 9, pp. 67–72. (in Russian).

12. Arushanjan J. B. The hormone of the epiphysis melatonin is a new nootropic remedy? Eksperimental’naya i klinicheskaya farmakologiya [Experimental and Clinical Pharmacology], 2005, vol. 68, no. 3, pp. 74–79. (in Russian).

13. Jouvet M. Sleep and serotonin: an unfinished story. Neuropsychopharmacology, 1999, vol. 21, suppl. 2, pp. 24S–27S.

14. Reiter R. J., Tan D. X., Manchester L. C., Pilar Terron M., Flores L. J., Koppisepi S. Medical implications of melatonin: receptor-mediated and receptor-independent actions. Advances in Medical Sciences, 2007, pp. 211–228.

15. Bartness T. J., Song C. Sympathetic and sensory innervation of white adipose tissue. The Journal of Lipid Research, 2007, vol. 48, pp. 1655–1672.

16. Maenura K., Taceda N. Circardian rhythms in CNS and peripheral clock disorders: role of the biological clock in cardiovascular diseases. Journal of Pharmaceutical Sciences, 2007, vol. 103, pp. 134–138.

17. Alonso-Vale M. I., Andreotti S., Mukai P. Y. Melatonin and the circadian entrainment of metabolic and hormonal activities in primary isolated adipocytes. Journal of Pineal Research, 2008, vol. 45, pp. 422–429.

18. Ando H., Yanagihara H., Hayashi Y. Rhythmic messenger ribonucleic acid expression of clock genes and adipo- cytokines in mouse visceral adipose tissue. Endocrinology, 2005, vol. 146, pp. 5631–5636.

19. Wolden-Hanson T., Mitton D. R., McCants R. L., Yellon S. M., Wilkinson C. W., Matsumoto A. M., Rasmussen D. D. Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology, 2000, vol. 141, pp. 487–497. doi: 10.1210/ endo.141.2.7311

20. Cardinali D. P., Cano P., Jiménez-Ortega V. Melatonin and the metabolic syndrome: physiopathologic and therapeutical implications. Neuroendocrinology, 2011, vol. 93, pp. 133–142.

21. Scheer F. A., Chan J. L., Fargnoli J. Day/night variations of high-molecular-weight adiponectin and lipocalin-2 in healthy men studied under fed and fasted conditions. Diabetologia, 2010, vol. 53, pp. 2401–2405.

22. Thundyil J., Pavlovski D., Sobey Chr. G., Arumugam Th. V. Adiponectin receptor signaling in the brain. British Journal of Pharmacology, 2012, vol. 165, рр. 313–327. doi:10.1111/j.1476-5381.2011.01560.x.

23. Yang W. S., Lee W. J., Funahasshi T., Tanaka S., Matsuzawa Y., Chao C. L., Chen C. L., Tai T. Y., Chuang L. M. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. Journal of Endo- crinological Metabolism, 2001, vol. 86, pp. 3815–3819.

24. Silva Nunes J., Oliveira A., Duarte L., Barradas M., Melao A., Brito M., Veiga L. Factors related with adiponectinemia in obese and normal-weight women and with its variation in weight loss programs. Obesity Facts, 2013, vol. 6, pp. 124–133. doi:10.1159/000350664.

25. Chung S., Park Y., Kim O., Kim J., Baik H., Hong Y., Kim S., Shin J., Jun J., Jo Y., Ahn S., Jo Y., Son B., Kim S. Melatonin attenuates dextran sodium sulfate induced colitis with sleep deprivation: possible mechanism by microarray analysis. American Journal of Digestive Diseases, 2014, vol. 59, рp. 1134–1141. doi: 10.1007/s10620-013-3013-2.

26. Diamond, F. B. Jr., Eichler D. Leptin and the adipocyte endocrine system. Critical Reviews in Clinical Laboratory Sciences, 2002, vol. 39, pp. 499–525. doi: 10.1080/10408360290795565.

27. Rodríguez A., Gómez-Ambrosi J., Catalán V., Gil M., Becerril S., Sáinz N., Silva C., Salvador J., Colina I., Früh- beck G. Acylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipocytes. International Journal of Obesity, 2009, vol. 33, pp. 541–552. doi: 10.1038 / ijo.2009.40.

28. Tschöp M., Smiley D., Heiman M. Ghrelin induces adiposity in rodents. Nature, 2000, vol. 407, pp. 908–913. doi: 10.1038/35038090.

29. Panda, S., Antoch M., Miller B., Su A., Schook A., Straume M., Schultz P., Kay S., Takahashi J., Hogenesch J. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell, 2002, vol. 109, pp. 307–320.

30. Yan, J., Haifang W., Yuting L., Chunxuan S. Analysis of Gene Regulatory Networks in the Mammalian Circadian Rhythm. PLOS Computational Biology, 2005, vol. 4, no. 10, pp. e1000193. doi: 10.1371/journal.pcbi.1000193.

31. Chernyshova, M. P. Time structure of biosystems and biological time. St. Petersburg, Napisano perom, 2014, 172 p. (in Russian).

32. Ukai-Tadenuma M., Yamada R., Xu H., Ripperger J., Liu A., Ueda H. Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell, 2011, vol. 144, pp. 268–281. doi: 10.1016/j.cell.2010.12.019.

33. Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron, 2012, vol. 74, pp. 246–260. doi: 10.1016/ j.neuron.2012.04.006.

34. Yang X. Lamia K., Evans R. Nuclear receptors, metabolism, and the circadian clock. Cold Spring Harbor symposia on quantitative biology, 2007, vol. 72, pp. 387–394. doi: 10,1101 / sqb.2007.72.058.

35. Liu C., Li S., Liu T., Borjigin J., Lin J. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism. Nature, 2007, vol. 447, pp. 477–481. doi: 10.1038/nature05767.

36. Morgan L., Arendt J., Owens D., Folkard S., Hampton S., Deacon S., English J., Ribeiro D., Taylor K. Effects of the endogenous clock and sleep time on melatonin, insulin, glucose and lipid metabolism. The Journal of Endocrinology, 1998, vol. 157, pp. 443–451.

37. Baggs J., Price T., DiTacchio L., Panda S., Fitzgerald G., Hogenesch J. Network features of the mammalian circadian clock. PLoS Biology, 2009, vol. 7, pp. e52. doi: 10.1371/journal.pbio.1000052.

38. Pan X., Hussain M. Clock is important for food and circadian regulation of macronutrient absorption in mice. Journal of Lipid Research, 2009, vol. 50, pp. 1800–1813. doi: 10.1194/jlr.M900085-JLR200.

39. Sukumaran S., Xue B., Jusko W., Dubois D., Almon R. Circadian variations in gene expression in rat abdominal adipose tissue and relationship to physiology. Physiological Genomics, 2010, vol. 42A, no. 2, pp. 141–152. doi: 10.1152/ physiolgenomics.00106.2010.

40. Shimba S., Ishii N., Ohta Y., Ohno T., Watabe Y., Hayashi M., Wada T., Aoyagi T., Tezuka M. Brain and muscle arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2005, vol. 102, no. 34, pp. 12071–12076. doi: 10.1073/pnas.0502383102.

41. Soták M., Polidarová L., Musílková J., Hock M., Sumová A., Pácha J. Circadian regulation of electrolyte absorption in the rat colon. American Journal of Physiology. Gastrointestinal and Liver Physiology, 2011, vol. 301, pp. G1066–G1074. doi: 10.1152/ajpgi.00256.2011.

42. Back P., Hamprecht B., Lynen F. Regulation of cholesterol biosynthesis in rat liver: Diurnal changes of activity and influence of bile acids. Archives of Biochemistry and Biophysics, 1969, vol. 133, pp. 11–21.

43. Hamprecht B., Nüssler C., Lynen F. Rhythmic changes of hydroxymethylglutaryl coenzyme a reductase activity in livers of fed and fasted rats. FEBS Letters, 1969, vol. 4, pp. 117–121.

44. Ho K. Circadian rhythm of cholesterol biosynthesis: Dietary regulation in the liver and small intestine of hamsters. International Journal of Chronobiology, 1979, vol. 6, pp. 39–50.

45. Kohsaka A., Laposky A., Ramsey K., Estrada C., Joshu C., Kobayashi Y., Turek F., Bass J. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell metabolism, 2007, vol. 6, pp. 414–421. doi: 10.1016/j.cmet.2007.09.006.

46. He W., Barak Y., Hevener A., Olson P., Liao D., Le J., Nelson M., Ong E., Olefsky J., Evans R. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proceedings of the National Academy of Sciences of the United States of America, 2003, vol. 100, no. 26, pp. 15712–15717. doi: 10.1073/pnas.2536828100.

47. Cristancho A., Lazar M. Forming functional fat: A growing understanding of adipocyte differentiation. Nature reviews. Molecular Cell Biology, 2011, vol. 12, pp. 722–734. doi: 10.1038 / nrm3198.

48. Li M.-D. Li C.-M., Wang Z. The role of circadian clocks in metabolic disease. The Yale Journal of Biology and Medicine, 2012, vol. 85, no. 3, pp. 387–401.


Review

Views: 492


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)