Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

NITROPIRIN CONTRIBUTES TO THE ENHANCEMENT OF PLANT SALT TOLERANCE OF BARLEY (HORDEUM VULGARE L.)

Abstract

The influence of Nitropirin® (NP), which is a mixture of the key enzyme cofactors of assimilation of inorganic nitrogen-nitrate reductase (NR) on enzyme activity in 7-day barley grown on the surface of the water, in the face of increasing male-content protein as well as in conditions of salinity produced by NaCl were investigated. Growing plants on solutions of NP increased general activity NR on 21 % and its active form at 76 %. Substrate induction NR using KNO3 (20 mm), leading to increased male-content of protein, increased in the presence of the NP NR activity an average of 60 %, which may indicate a limit the HP activity at the level of its cofactors as normal and when you increase the enzyme content. In the presence of KNO3 and HP Activator (exogenous 5-aminolevulinic acid) NP contributed to high salt tolerance of barley plants grown on NaCl solutions (150 mm), in the early stages of vegetation that was manifested in the stimulation of growth processes, increase the activity of NR and proline content, as well as in reducing AFC, detektiruemom on the ability of plants to generate the superoxide anion radical. 

About the Authors

N. G. Averina
Институт биофизики и клеточной инженерии НАН Беларуси
Belarus
Сhief researcher, Professor


R. A. Sherbakov
Институт биофизики и клеточной инженерии НАН Беларуси
Belarus
Ph. D. (Biol.), Researcher


E. L. Nedved
Институт биофизики и клеточной инженерии НАН Беларуси
Belarus
Ph. D. (Biol.), Researcher


I. N. Minkov
Пловдивский университет
Bulgaria
Professor, Head of the Department


References

1. Garg S. K. Role and hormonal regulation of nitrate reductase activity in higher plants: a review. Plant Science Feed, 2013, vol. 3, рр. 13–20.

2. Foyer C. H., Parry M., Noctor G. Markers and signals associated with nitrogen assimilation in higher plants. Journal of Experimental Botany, 2003, vol. 54, рр. 585–593.

3. Kuznetsov V. V., Roshchupkin B. V., Kuznetsov V. V., Borisova N. N., Yatsenko I. A. Whether heat shock proteins in the regulation of nitrate reductase gene expression Agrostemma githago L. with a sudden rise in temperature? Fiziologiia rastenii [Russian Journal of Plant Physiology], 1991, vol. 38, no. 5, рр. 970–979. (in Russian).

4. Kende H., Shen T. C. Nitrate reductase in Agrostemma githago. Comparison of the inductive effects of nitrate and cytokinin. Biochimica et Biophysica Acta, 1972, vol. 286, рр. 118–125.

5. Beyzaei Z., Sherbakov R. A., Averina N. G. Response of nitrate reductase to exogenous application of 5-aminolevulinic acid in barley plants. Journal of Plant Growth Regulation, 2014, vol. 33, no. 309, рр. 745–750.

6. Savidov N. A., Tokarev B. I., Lips S. H. Regulation of Mo-cofactor, NADH- and NAD(P)H-specific nitrate reductase activities in the wild type and two nar-mutant lines of barley (Hordeum vulgare L.). Journal of Experimental Botany, 2013, vol. 48, no. 309, рр. 847–855.

7. Garg N., Singla R. Nitrate reductase activity in roots and leaves of chickpea cultivars under salt stress. Spanish Journal of Agricultural Research, 2005, vol. 3, рр. 248–252.

8. Averina N. G., Beizai Z., Shcherbakov R. A., Usatov A. V. The role of nitrogen metabolism in the formation of the salt tolerance of barley. Fiziologiia rastenii [Russian Journal of Plant Physiology], 2014, vol. 61, no. 1, рр. 106–113. (in Russian).

9. Averina N. G., Beizai Z., Shcherbakov R. A. Involvement of nitrate reductase in the ameliorating effect of 5-amino-levulinic acid on NaCl-stressed barley seedlings. Acta Physiologiae Plantarum, 2015, vol. 37, no. 11, рр. 1–8.

10. Averina N. G., Beizai Z., Shcherbakov R. A. Molecular mechanisms of regulation of nitrate reductase exogenous 5-aminolevulinic acid in barley grown in sodium chloride salinity conditions. Doklady Natsional’noi akademii nauk Belarusi [Doklady of the National Academy of Sciences of Belarus], 2015, vol. 59, no. 4, рр. 95–101. (in Russian).

11. Averina N. G., Yaronckaya E. B. Biosynthesis of tetrapyrroles in plants. Minsk, Belarusian science, 2012. 413 р. (in Russian).

12. Zhelyazkov I. S., Minkov I. N., Dushkova P. I., Nesheva E. K. Tool of regulation contents of nitrate in plant. Patent BG, no. 60673B1, 1994. (in Bulgarian).

13. Toneva V. T., Dimitrova S. D., Pavlova B. I., Minkov I. N. Influence of nitropyrine on the early stages of chlorophyll synthesis in wheat. Bulgarian Journal of Plant Physiology, 2002, vol. 28, no. 1–2, рр. 92–98.

14. Sumithra K., Jutur P. P., Carmel B. D., Reddy A. R. Salinity-induced changes in two cultivars of Vigna radiate: responses of antioxidative and proline metabolism. Plant Growth Regulation, 2006, vol. 50, рр. 11–22.

15. Misra N., Gupta A. K. Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Science, 2005, vol. 169, рр. 331–339.

16. Shorning B. Yu., Smirnova E. G., Yaguzhinskii L. S., Vanyushin B. F. The need for education for development of etiolated seedlings of superoxide wheat. Biochemistry, 2000, vol. 65, no. 12, рр. 1612–1617. (in Russian).

17. Averina N. G., Gritskevich E. R., Vershilovskaya I. V., Usatov A. V., Yaronskaya E. B. Mechanisms of formation of barley plant resistance to salt stress under the action of 5-aminolevulinic acid. Fiziologiia rastenii [Plant Physiology], 2010, vol. 57, no. 6, рр. 849–856. (in Russian).


Review

Views: 533


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)