ГЕНЕТИКА УСТОЙЧИВОСТИ РАПСА (BRASSI CA NAPUS L.) К ФОМОЗУ
Аннотация
Фомоз является широко распространенной болезнью рапса, которую вызывают два вида грибных патогенов – Leptosphaeria maculans и L. biglobosa, причем наиболее значимые потери урожаю наносит L. maculans. Оба патогена являются гемибиотрофами. Они способны сохраняться в течение многих лет на стерне и растительных остатках. Источником первичной инфекции для всходов рапса служат аскоспоры и пикнидиоспоры. Фомоз развивается на всех органах растений: на листьях и стручках – в виде серых сухих овальных пятен, на стеблях – в виде рака стебля (наиболее тяжелое поражение растений), на корнях – в виде сухой корневой гнили. При высоких температурах тяжесть симптомов усиливается, поэтому с потеплением климата угроза фомоза еще больше возрастает. Геном L. maculans секвенирован, клонировано 7 генов авирулентности. Секвенирован также геном рапса, но клонирован пока 1 из 14 известных главных генов устойчивости к L. maculans. Взаимодействие генов авирулентности с комплементарными генами устойчивости в фитопатосистеме Brassica – L. maculans происходит по типу «ген на ген». Все известные главные гены устойчивости рапса к L. maculans локализованы в A-геноме, с помощью ассоциативного картирования определены локусы устойчивости и в С-геноме. Некоторые гены устойчивости интрогрессированы в рапс из других видов (B. rapa, B. juncea, B. nigra). Кроме главных генов ювенильной (расоспецифической) устойчивости выявлены малые гены количественной (частичной, полевой) устойчивости рапса к фомозу. Необходимо активизировать изучение генетики устойчивости рапса и к L. biglobosa, который вызывает существенные потери урожая в странах с высокой летней температурой.
Об авторе
Е. А. ВолуевичБеларусь
д-р биол. наук, доцент, гл. науч. сотрудник
Список литературы
1. Plant breeding: assessment of genetic diversity in crop plants and its exploitation in breeding / W. Friedt [et al.] // Progress in Botany. – 2007. – Vol. 168. – P. 151–178.
2. Molecular phylogeny of the Leptosphaeria maculans – L. biglobosa species complex / E. Mendes-Pereira [et al.] // Mycol. Res. – 2003. – Vol. 107. – P. 1287–1304.
3. Gudelj, I. Evolution of sibling fungal pathogens in relation to host specialization / I. Gudelj, B. D. L. Fitt, F. van den Bosch // Phytopathology. – 2004. – Vol. 94. – P. 789–795.
4. Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe / J. S. West [et al.] // Plant Pathol. – 2001. – Vol. 50. – P. 10–27.
5. Rouxel, T. The stem canker (blackleg) fungus, Leptosphaeria maculans, enters the genomic era / T. Rouxel, M. H. Bale-sdent // Mol. Plant Pathol. – 2005. – Vol. 6. – P. 225–241.
6. Johnson, R. D. Variation in host range, systemic infection and epidemiology of Leptosphaeria maculans / R. D. Joh- nson, B. G. Lewis // Plant Pathol. – 1994. – Vol. 43. – P. 269–277.
7. Williams, R. H. Differentiating A and B groups of Leptosphaeria maculans, causal agent of stem canker (blackleg) of oilseed rape / R. H. Williams, B. D. L. Fitt // Plant Pathol. – 1999. – Vol. 48. – P. 161–175.
8. Shoemaker, R. A. The teleomorph of the weakly aggressive segregate of Leptosphaeria maculans / R. A. Shoemaker, H. Brun // Can. J. Bot. – 2001. – Vol. 79. – P. 412–419.
9. Colonisation of winter oilseed rape tissues by A/Tox+ and B/Tox0 Leptosphaeria maculans (phoma stem canker) in France and England / J. S. West [et al.] // Plant Pathol. – 2002a. – Vol. 51. – P. 311–321.
10. Jędryczka, M. Properties of Phoma lingam (Tode ex Fr.) Desm. isolates from Poland I. Pathogenicity characterisation / M. Jędryczka, E. Lewartowska, I. Frencel // Phytopathologia Polonica. – 1994. – Vol. 7. – P. 71–79.
11. Changes in population structure of Leptosphaeria maculans in Poland / Z. Karolewski [et al.] // Phytopathologia Polonica. – 2002. – Vol. 25. – P. 27–34.
12. Loop-mediated isothermal amplification (LAMP) is a speedy molecular tool to study Leptosphaeria spp. populations in air and plant samples / M. Jędryczka [et al.] // Healthy plant – healthy people: 11th conf. of the European foundation for plant pathology, Krakόw, 8–13 September 2014. – Krakόw, 2014. – P. 137.
13. Population structure and pathogenicity grouping of L. maculans isolates from Hungary / S. Z. Szlávik [et al.] // Blackleg News. – 2003. – P. 3–4.
14. Diversity of Leptosphaeria maculans/L. biglobosa species complex and epidemiology of phoma stem canker on oilseed rape in Lithuania / I. Brazauskienė [et al.] // J. of Plant Pathol. – 2011. – Vol. 93, N 3. – P. 577–585.
15. World-wide importance of Phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus) / B. D. L. Fitt [et al.] // Eur. J. Plant Pathol. – 2006. – Vol. 114, N 1. – P. 3–15.
16. Fernando, W. G. D. Detection of Leptosphaeria maculans and Leptosphaeria biglobosa causing blackleg disease in canola from canadian canola seed lots and dockage / W. G. D. Fernando, X. Zhang, C. C. Amarasinghe // Plants. – 2016. – Vol. 5, N 1. – P. 1–11.
17. Genetic diversity and differentiation of Leptosphaeria biglobosa on oilseed rape in China / L. Hao [et al.] // Phytoparasitica. – 2015. – Vol. 43, issue 2. – P. 253–263.
18. Patterns of ascospore release in relation to phoma stem canker epidemiology in England (Leptosphaeria maculans) and Poland (L. biglobosa) / Y. J. Huang [et al.] // Eur. J. Plant Pathol. – 2005. – Vol. 111. – P. 263–277.
19. Hadrami, El A. Variations in relative humidity modulate Leptosphaeria spp. pathogenicity and interfere with canola mechanisms of defence / A. El Hadrami, W. G. D. Fernando, F. Daayf // Eur. J. Plant Pathol. – 2010. – Vol. 126. – P. 187–202.
20. Hammond, K. E. A systemic pathway in the infection of oilseed rape plants by Leptosphaeria maculans / K. E. Ham- mond, B. G. Lewis, T. M. Musa // Plant Pathol. – 1985. – Vol. 34, N 4. – P. 557–565.
21. Williams, P. H. Biology of Leptosphaeria maculans / P. H. Williams // Can. J. Plant Pathol. – 1992. – Vol. 14. – P. 30–35.
22. Hall, R. Epidemiology of blackleg of oilseed rape / R. Hall // Can. J. Plant Pathol. – 1992. – Vol. 14. – P. 46–55.
23. Keri, M. Genetic studies of host-pathogen interaction between Brassica napus and Leptosphaeria maculans: Ph. D. Thesis … of Doctor of Philosophy / M. Keri; University of Manitoba. – Winnipeg, 1999. – 207 p.
24. Frequency of avirulence alleles in field populations of Leptosphaeria maculans in Europe / A. Stachowiak [et al.] // Eur. J. Plant Pathol. – 2006. – Vol. 114. – P. 67–75.
25. Gladders, P. Observations on the epidemiology of Leptosphaeria maculans stem canker in winter oilseed rape / P. Gladders, T. M. Musa // Plant Pathol. – 1980. – Vol. 29. – P. 28–37.
26. Gugel, R. K. History, occurrence, impact, and control of blackleg of rapeseed / R. K. Gugel, G. A. Petrie // Can. J. Plant Pathol. – 1992. – Vol. 14. – P. 36–45.
27. Potential spread of Leptosphaeria maculans (phoma stem canker) on oilseed rape crops in China / X. Zhang [et al.] // Healthy plant – healthy people: 11th conf. of the European foundation for plant pathology, Krakόw, 8–13 September 2014. – Krakόw, 2014. – P. 135.
28. Fernando, W. G. D. Breeding for blackleg resistance: the biology and epidemiology / W. G. D. Fernando, Y. Chen, K. Ghanbarnia // Adv. Bot. Res. – 2007. – Vol. 45. – P. 271–311.
29. Two weather-based models for predicting the onset of seasonal release of ascospores of Leptosphaeria maculans or L. biglobosa / M. U. Salam [et al.] // Plant Pathol. – 2007. – Vol. 56. – P. 412–423.
30. Effects of temperature and wetness duration on infection of oilseed rape leaves by ascospores of Leptosphaeria mac-ulans (stem canker) / J. E. Biddulph [et al.] // Eur. J. Plant Pathol. – 1999. – Vol. 105. – P. 769–781.
31. Badawy, H. M. A. Temperature and aging of host tissue affect the interactions between different oilseed rape cultivars and pathotype groups of Leptosphaeria maculans / H. M. A. Badawy, J. Kakau, H. H. Hoppe // J. Phytopathol. – 1992. – Vol. 134. – P. 255–263.
32. Petrie, G. A. Effects of temperature and moisture on the number, size and septation of ascospores produced by Leptosphaeria maculans (blackleg) on rapeseed stubble / G. A. Petrie // Canad. Plant Dis. Survey. – 1994. – Vol. 74. – P. 141–151.
33. Guo, X. W. Seasonal and diurnal patterns of spore dispersal by Leptosphaeria maculans from canola stubble in relation to environmental conditions / X. W. Guo, W. G. D. Fernando // Plant Disease. – 2005. – Vol. 89. – P. 97–104.
34. Petrie, G. A. Long-term survival and sporulation of Leptosphaeria maculans (blackleg) on naturally-infected rapeseed/canola stubble in Saskatchewan / G. A. Petrie // Canad. Plant Dis. Survey. – 1995. – Vol. 75. – P. 23–34.
35. Epidemiology of Leptosphaeria maculans in relation to forecasting stem canker severity on winter oilseed rape in the UK / J. S. West [et al.] // Ann. Appl. Biol. – 1999. – Vol. 135. – P. 535–546.
36. Effect of rotation of canola (Brassica napus) cultivars with different compliments of blackleg resistance genes on disease severity / S. J. Marcroft [et al.] // Plant Pathol. – 2012. – Vol. 61. – P. 934–944.
37. Expression of resistance to Leptosphaeria maculans in Brassica napus double haploid lines in France and Australia is influenced by location / R. Delourme [et al.] // Ann. Appl. Biol. – 2008. – Vol. 153. – P. 259–269.
38. Li, H. Hazard from reliance on cruciferous hosts as source of major gene-based resistance for managing blackleg (Leptosphaeria maculans) disease / H. Li, M. J. Barbetti, K. Sivasithamparam // Field Crops Res. – 2005. – Vol. 91. – P. 185–198.
39. Howlett, B. J. Current knowledge of the interaction between Brassica napus and Leptosphaeria maculans / B. J. How- lett // Can. J. Plant Pathol. – 2004. – Vol. 26. – P. 245–252.
40. Lamey, H. A. Blackleg canola (Brassica napus) caused by Leptosphaeria maculans in North Dakota / H. A. Lamey, D. E. Hershman // Plant Dis. – 1993. – Vol. 77. – P. 1263.
41. Assessment of genetic diversity in Australian canola (Brassica napus L.) cultivars using SSR markers / J. Wang [et al.] // Crop Pasture Sci. – 2009. – Vol. 60. – P. 1193–1201.
42. Genetic map construction and QTL mapping of resistance to blackleg (Leptosphaeria maculans) disease in Australian canola (Brassica napus L.) cultivars / S. Kaur [et al.] // Theor. Appl. Genet. – 2009. – Vol. 120, N 1. – P. 71–83.
43. Identification and characterization of candidate Rlm4 blackleg resistance genes in Brassica napus using next generation sequencing / R. Tollenaere [et al.] // Plant Biotechnol. J. – 2012. – Vol. 10, N 6. – P. 709–715.
44. Major gene resistance to blackleg in Brassica napus overcome within three years of commercial production in southeastern Australia / S. J. Sprague [et al.] // Plant Pathol. – 2006. – Vol. 59. – P. 190–198.
45. Таргонский, С. Тилмор: ваш ключ к выращиванию рапса [Электронный ресурс] / С. Таргонский // Портал «СБ». – Режим доступа: http://tv.sb.by/kolonka-eksperta/article/tilmor-vash-klyuch-k-vyrashchivaniyu-rapsa.html. – Дата доступа: 30.08.2016.
46. Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat-induced Point mutations / T. Rouxel [et al.] // Nature Communications. – 2011. – Vol. 2, N 202. – P. 1–10.
47. Genomic advances will herald new insights into the Brassica: Leptosphaeria maculans pathosystem / A. Hayward [et al.] // Plant Biology. – 2012. – Vol. 14, suppl. 1. – P. 1–10.
48. Genome structure impacts molecular evolution at the AvrLm1 avirulence locus of the plant pathogen Leptosphaeria maculans / L. Gout [et al.] // Environ. Microbiol. – 2007. – Vol. 9. – P. 2978–2992.
49. Repeat-induced point mutation (RIP) as an alternative mechanism of evolution toward virulence in Leptosphaeria maculans / I. Fudal [et al.] // MPMI. – 2009. – Vol. 22. – P. 932–941.
50. Leptosphaeria maculans avirulence gene AvrLm4-7 confers a dual recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change / F. Parlange [et al.] // Mol. Microbiol. – 2009. – Vol. 71. – P. 851–863.
51. Farman, M. L. Telomeres in the rice blast fungus Magnaporthe oryzae: the world of the end as we know it / M. L. Far- man // FEMS Microb. Lett. – 2007. – Vol. 273. – P. 125–132.
52. A game of hide and seek between avirulence genes AvrLm4-7 and AvrLm3 in Leptosphaeria maculans / C. Plissonneau [et al.] // New Phytologist. – 2016. – Vol. 209. – P. 1613–1624.
53. Heterochromatin-like regions as ecological niches for avirulence genes in the Leptosphaeria maculans genome: map-based cloning of AvrLm6 / I. Fudal [et al.] // MPMI. – 2007. – Vol. 20. – P. 459–470.
54. New avirulence genes in the phytopathogenic fungus Leptosphaeria maculans / M. H. Balesdent [et al.] // Phyto- pathology. – 2002. – Vol. 92. – P. 1122–1133.
55. Analysis of Leptosphaeria maculans race structure in a worldwide collection of isolates / M. H. Balesdent [et al.] // Phytopathology. – 2005. – Vol. 95. – P. 1061–1071.
56. Genetic mapping of the Leptosphaeria maculans avirulance gene corresponding to the LepR1 resistance gene of Brassica napus / K. Ghanbarnia [et al.] // Theor. Appl. Genet. – 2012. – Vol. 124. – P. 505–513.
57. Lost in the middle of nowhere: the AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans / L. Gout [et al.] // Mol. Microbiol. – 2006. – Vol. 60. – P. 67–80.
58. Rapid identification of the Leptosphaeria maculans avirulence gene AvrLm2 using an intraspecific comparative genomics approach / K. Ghanbarnia [et al.] // Mol. Plant Pathol. – 2015. – Vol. 16, N 7. – P. 699–709.
59. The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa / M. H. Balesdent [et al.] // New Phytologist. – 2013. – Vol. 198. – P. 887–898.
60. An avirulence gene, AvrLmJ1, from the blackleg fungus, Leptosphaeria maculans, confers avirulence to Brassica juncea cultivars / A. P. van de Wouw [et al.] // Mol. Plant Pathol. – 2014 а. – Vol. 15. – P. 523–530.
61. A large-scale survey of races of Leptosphaeria maculans occurring on oilseed rape in France / M. H. Balesdent [et al.] // Eur. J. Plant Pathol. – 2006. – Vol. 114. – P. 53–65.
62. Mitrousia, G. K. Phoma stem canker on oilseed rape cultivars with the resistance gene Rlm7 in the UK / G. K. Mit- rousia, Y.-J. Huang, B. D. L. Fitt // Healthy plant – healthy people: 11th conf. of the European foundation for plant pathology, Krakόw, 8–13 September 2014. – Krakόw, 2014. – P. 128.
63. Managing blackleg of canola in western Canada – “new” strategies against an old disease / G. Peng [et al.] // Healthy plant – healthy people: 11th conf. of the European foundation for plant pathology, Krakόw, 8–13 September 2014. – Krakόw, 2014. – P. 132.
64. Breakdown of Rlm3 resistance in the Brassica napus–Leptosphaeria maculans pathosystem in western Canada / X. Zhang [et al.] // Eur. J. Plant Pathol. – 2015. – Vol. 145, N 3. – P. 1–16.
65. Leptosphaeria maculans in winter oilseed rape: distribution of different races in Germany and efficacy of monogenic resistance genes / M. Winter [et al.] // Healthy plant – healthy people: 11th conf. of the European foundation for plant pathology, Krakόw, 8–13 September 2014. – Krakόw, 2014. – P. 133.
66. Ferreira, M. E. Mapping of a locus controlling resistance to Albugo candida in Brassica napus using molecular markers / M. E. Ferreira, P. H. Williams, T. C. Osborn // Phytopathology. – 1995. – Vol. 85. – P. 218–220.
67. Genes for race-specific resistance against blackleg disease in Brassica napus L. / D. Ansan-Melayah [et al.] // Plant Breeding. – 1998. – Vol. 117. – P. 373–378.
68. Identification of QTL involved in field resistance to light leaf spot (Pyrenopeziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed (Brassica napus L.) / M. L. Pilet [et al.] // Theor. Appl. Genet. – 1998. – Vol. 97. – P. 398–406.
69. Major gene and polygenic resistance to Leptosphaeria maculans in oilseed rape (Brassica napus) / R. Delourme [et al.] // Eur. J. Plant Pathol. – 2006. – Vol. 114. – P. 41–52.
70. Rimmer, S. R. Resistance of oilseed Brassica spp. to blackleg caused by Leptosphaeria maculans / S. R. Rimmer, C. G. J., van den Berg // Can. J. Plant Pathol. – 1992. – Vol. 14. – P. 56–66.
71. Zhu, J. S. Studies on resistance to Phoma lingam in Brassica napus – Brassica nigra addition lines / J. S. Zhu, D. Struss, G. Robbelen // Plant Breeding. – 1993. – Vol. 111. – P. 192–197.
72. RAPD markers associated with resistance to blackleg disease in Brassica species / A. O. Ananga [et al.] // Afr. J. Biotechnol. – 2006. – Vol. 5. – P. 2041–2048.
73. Detection, introgression and localization of genes conferring specific resistance to Leptosphaeria maculans from Brassica rapa into B. napus / M. Leflon [et al.] // Theor. Appl. Genet. – 2007. – Vol. 115. – P. 897–906.
74. A cluster of major specific resistance genes to Leptosphaeria maculans in Brassica napus / R. Delourme [et al.] // Phytopathology. – 2004. – Vol. 94. – P. 578–583.
75. Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus / H. Brun [et al.] // New Phytologist. – 2010. – Vol. 185. – P. 285–299.
76. Molecular mapping and validation of Rlm1 gene for resistance to Leptosphaeria maculans in canola (Brassica napus L.) / R. Raman [et al.] // Crop Pasture Sci. – 2012. – Vol. 63. – P. 1007–1017.
77. Wang, Z. Development of high-throughput molecular markers for blackleg (Leptosphaeria maculans) resistance genes in Brassica napus for gene stacking / Z. Wang // Universal J. of Plant Sci. – 2013. – Vol. 1. – P. 118–124.
78. A ten-year survey of populations of Leptosphaeria maculans in France indicates a rapid adaptation towards the Rlm1 resistance gene of oilseed rape / T. Rouxel [et al.] // Eur. J. Plant Pathol. – 2003. – Vol. 109. – P. 871–881.
79. The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1 / N. J. Larkan [et al.] // New Phytologist. – 2013. – Vol. 197. – P. 595–605.
80. Co-localisation of the blackleg resistance genes Rlm2 and LepR3 on Brassica napus chromosome A10 / N. J. Larkan [et al.] // BMC Plant Biol. – 2014. – Vol. 14, N 387. – P. 1–9.
81. Genetic control and host range of avirulence toward Brassica napus cultivars Quinta and Jet Neuf in Leptosphaeria maculans / M. H. Balesdent [et al.] // Phytopathology. – 2001. – Vol. 91. – P. 70–76.
82. Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.) / R. Raman [et al.] // Theor. Appl. Genet. – 2012b. – Vol. 125. – P. 405–418.
83. Selection of stable Brassica napus – B. juncea recombinant lines resistant to blackleg (Leptosphaeria maculans). 1. Identification of molecular markers, chromosomal and genomic origin of the introgression / A. M. Chèvre [et al.] // Theor. Appl. Genet. – 1997. – Vol. 95. – P. 1104–1111.
84. Stabilization of resistance to Leptosphaeria maculans in Brassica napus – B. juncea recombinant lines and its intro-gression into spring type Brassica napus / A. M. Chèvre [et al.] // Plant Disease. – 2008. – Vol. 92. – P. 1208–1214.
85. Characterization of Brassica nigra chromosomes and of blackleg resistance in B. napus – B. nigra addition lines / A. M. Chèvre [et al.] // Plant Breeding. – 1996. – Vol. 115. – P. 113–118.
86. Yu, F. Identification of two novel genes for blackleg resistance in Brassica napus / F. Yu, D. J. Lydiate, S. R. Rimmer // Theor. Appl. Genet. – 2005. – Vol. 110. – P. 969–979.
87. Yu, F. Identification and mapping of a third blackleg resistance locus in Brassica napus derived from B. rapa subsp. sylvestris / F. Yu., D. J. Lydiate, S. R. Rimmer // Genome. – 2008. – Vol. 51. – P. 64–72.
88. Rimmer, S. R. Resistance genes to Leptosphaeria maculans in Brassica napus / S. R. Rimmer // Can. J. Plant Pathol. – 2006. – Vol. 28. – Р. 288–297.
89. Identification and mapping of a novel blackleg resistance locus LepR4 in the progenies from Brassica napus × B. rapa subsp. sylvestris / F. Yu [et al.] // Theor. Appl. Genet. – 2013. – Vol. 126, N 2. – P. 307–315.
90. Identification of a Brassica juncea-derived recessive gene conferring resistance to Leptosphaeria maculans in oilseed rape / B. Saal [et al.] // Plant Breeding. – 2004. – Vol. 123. – P. 505–511.
91. Saal, B. RGA- and RAPD-derived SCAR markers for a Brassica B-genome introgression conferring resistance to blackleg in oilseed rape / B. Saal, D. Struss // Theor. Appl. Genet. – 2005. – Vol. 111. – P. 281–290.
92. RFLP mapping of resistance to the blackleg disease [causal agent, Leptosphaeria maculans (Desm) Ces et de Not] in canola (Brassica napus L.) / Y. Dion [et al.] // Theor. Appl. Genet. – 1995. – Vol. 91. – P. 1190–1194.
93. Zhu, B. Inheritance of resistance to Leptosphaeria maculans in two accessions of Brassica napus / B. Zhu, S. R. Rim- mer // Can. J. Plant Pathol. – 2003. – Vol. 25. – P. 98–103.
94. Molecular mapping of resistance to Leptosphaeria maculans in Australian cultivars of Brassica napus / R. Mayerhofer [et al.] // Genome. – 1997. – Vol. 40. – P. 294–301.
95. Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions / Ferreira, M. E. [et al.] // Phytopathology. – 1995. – Vol. 85. – P. 213–217.
96. Screening and identification of resistance to Leptosphaeria maculans (stem canker) in Brassica napus accessions / T. Rouxel [et al.] // Euphytica. – 2003. – Vol. 133. – P. 219–231.
97. Wretblad, S. Overexpression of a Brassica nigra cDNA gives enhanced resistance to Leptosphaeria maculans in B. napus / S. Wretblad, S. Bohman, C. Dixelius // MPMI. – 2003. – Vol. 16. – P. 477–484.
98. Dixelius, C. Inheritance of the resistance to Leptosphaeria maculans of Brassica nigra and B. juncea in near-isogenic lines of B. napus / C. Dixelius // Plant Breeding. – 1999. – Vol. 118. – P. 151–156.
99. Field efficiency of Brassica napus specific resistance correlates with Leptosphaeria maculans population structure / D. Ansan-Melayah [et al.] // Eur. J. Plant Pathol. – 1997. – Vol. 103. – P. 835–841.
100. Stability of QTL for field resistance to blackleg across two genetic backgrounds in oilseed rape / M. L. Pilet [et al.] // Crop Sci. – 2001. – Vol. 41. – P. 197–205.
101. Flor, H. H. The complementary genetic systems in flax and flax rust / H. H. Flor // Adv. Genet. – 1956. – Vol. 8, N 1. – P. 29–54.
102. Jones, J. D. G. The plant immune system / J. D. G. Jones, J. L. Dangl // Nature. – 2006. – Vol. 444, N 16. – P. 323–329. 103. Shades of gray: the world of quantitative disease resistance / J. A. Poland [et al.] // Trends Plant Sci. – 2008. – Vol. 14, N 1. – P. 21–29.
103. Blackleg disease on oilseed Brassica in Australia / P. A. Salisbury [et al.] // Aust. J. Exp. Agr. – 1995. – Vol. 35. – P. 665–672.
104. Khangura, R. K. Prevalence of blackleg (Leptosphaeria maculans) on canola (Brassica napus) in Western Australia / R. K. Khangura, M. J. Barbetti // Aust. J. Exp. Agr. – 2001. – Vol. 41. – P. 71–40.
105. Factors affecting production of inoculum of the blackleg fungus Leptosphaeria maculans in south-eastern Australia / S. J. Marcroft [et al.] // Aust. J. Exp. Agr. – 2003. – Vol. 43. – P. 1231–1236.
106. Potential for using host-resistance to reduce production of pseudothecia and ascospores of Leptosphaeria maculans, the blackleg pathogen of Brassica napus / S. J. Marcroft [et al.] // Plant Pathol. – 2004. – Vol. 53. – P. 468–474.
107. Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm.) ces. et De Not., in winter rapeseed (Brassica napus L.) / M. L. Pilet [et al.] // Theor. Appl. Genet. 1998. – Vol. 96. – P. 23–30.
108. Field behaviour of oilseed rape genotypes carrying major resistance genes exposed to different Leptosphaeria mac-ulans populations / H. Brun [et al.] // Intern. Org. Boil. Control Bull. – 2004. – Vol. 27. – P. 95–100.
109. Light, K. A. Usefulness of winter canola (Brassica napus) race-specific resistance genes against blackleg (causal agent Leptosphaeria maculans) in southern Australian growing conditions / K. A. Light, N. N. Gororo, P. A. Salisbury // Crop Pasture Sci. – 2011. – Vol. 62. – P. 162–168.
110. Identification of environmentally stable QTL for resistance against Leptosphaeria maculans in oilseed rape (Brassica napus) / Y. J. Huang [et al.] // Theor. Appl. Genet. – 2016. – Vol. 129, N 1. – P. 169–180.
111. Blackleg resistance in rapeseed: phenotypic screen, molecular markers and genome wide linkage and association mapping / H. Raman [et al.] // 17th Australian Research Assembly on Brassicas (ARAB), Wagga Wagga, 15–17 August 2011. – Wagga Wagga, 2011. – P. 61–64.
112. Association mapping of quantitative resistance for Leptosphaeria maculans in oilseed rape (Brassica napus L.) / C. Jestin [et al.] // Mol. Breed. – 2011. – Vol. 27. – P. 271–287.
113. Electrophoretic analysis of natural populations of Leptosphaeria maculans directly from leaf lesions / H. Brun [et al.] // Plant Pathol. – 1997. – Vol. 46. – P. 147–154.
114. Somda, I. Seedling and adult plant reactions of Brassica napus – B. juncea recombinant lines towards A- and B-group isolates of Leptosphaeria maculans / I. Somda, M. Renard, H. Brun // Ann. Appl. Biol. – 1998. – Vol. 132. – P. 187–196.
115. Evolution of the frequency of the AvrLm7 allele of Leptosphaeria maculans in France under selection pressure: a 15-years survey / C. Plissonneau [et al.] // Healthy plant – healthy people: 11th conf. of the European foundation for plant pathology, Krakόw, 8–13 September 2014. – Krakόw, 2014. – P. 129.
116. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome / B. Chalhoub [et al.] // Science. – 2014. – Vol. 345. – P. 950–953.