Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

THE CREATION OF TRANSGENIC PLANTS NICOTIANA TABACUM WITH GENE NDB2 ARABIDOPSIS THALIANA TO STUDY RESPONSE TO STRESS

Abstract

Transgenic tobacco plants that express the ndb2 gene were obtained to study the influence of changed level of the ndb2 gene (NAD(P)H dehydrogenase B2, EC 1.6.5.2) expression on the activity of the proteins of mitochondrial localization and stress resistance of plants. The ndb2 gene of 1749 bp was isolated from Arabidopsis thaliana total messenger RNA using RT-PCR. This gene was cloned into the pBI121 plasmid. The pBI121 _ NDB2 vector construction containing the ndb2 gene under the control of the 35S CaMV promoter was created on the basis of the pBI121 plasmid. The pBI121_NDB2 efficiency for transformation was demonstrated. The ndb2 gene integration into the tobacco genome was confirmed experimentally. The tobacco lines expressing target ndb2 gene were obtained.

About the Authors

D. V. Sauchyn
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus
Ph. D. (Biol.), Researcher


P. V. Kuzmitskaya
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus
Researcher


O. Yu. Urbanovich
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus
D. Sc. (Biol.), the Head of the laboratory


G. B. Borovskii
Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of Russian Academy of Sciences
Russian Federation
Ph. D. (Biol.), Researcher


I. V. Fedoseeva
Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of Russian Academy of Sciences
Russian Federation
D. Sc. (Biol.), Professor, Chief researcher


References

1. Michalecka, A. M., Svensson, A. S., Johansson, F. I., Agius, S. C., Johanson, U., Brennicke, A., Binder, S. and Rasmus- son, A. G. (2003), “Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light”, Plant Physiology, vol. 133, pp. 642–652.

2. Millar, A. H., Whelan, J., Soole, K. L. and Day, D. A. (2011) “Organization and regulation of mitochondrial respiration in plants”, Annual Reviews Plant Biology, vol. 62, pp. 79–104.

3. Moller, I. M. (2001), “Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species”, Annual Reviews Plant Biology, vol. 52, pp. 561–591.

4. Clifton, R., Lister, R., Parker, K. L., Sappl, P. G., Elhafez, D., Millar, A. H., Day, D. A. and Whelan, J. (2005), “Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana”, Plant Molecular Biology, vol. 58, pp. 193–212.

5. Baxter, C. J., Redestig, H., Schauer, N., Repsiber, D., Patil, K. R., Nielsen, J., Selbig, J., Liu, J., Fernie, A. R. and Sweet- love, L. J. (2007), “The metabolic response of heterotrophic Arabidopsis cells to oxidative stress”, Plant Physiology, vol. 143, pp. 312–325.

6. Yoshida, K. and Noguchi, K. (2009), “Differential gene expression profiles of the mitochondrial respiratory components in illuminated Arabidopsis leaves”, Plant and Cell Physiology, vol. 50, pp. 1449–1462.

7. Amirsadeghi, S., Robson, C. A. and Vanlerberghe, G. C. (2007), “The role of the mitochondrion in plant responses to biotic stress”, Physiologia Plantarum, vol. 129, pp. 253–266.

8. Wallstrom, S. V., Florez-Sarasa, I., Araujo, W. L., Escobar, M. A., Geisler, D. A., Aidemark, M., Lager, I., Fernie, A. R., Ribas-Carbo, M. and Rasmusson A. G. (2014), “Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in Arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport”, Plant and Cell Physiology, vol. 55, pp. 881–896.

9. Grabelnych, O. I., Borovik, O. A., Tauson, E. L., Pobezhimova, T. P., Katyshev, A. I., Pavlovskaya, N. S., Koroleva, N. A., Lyubushkina, I. V., Borovskii, G. B., Voinikov, V. K., Bashmakov, V. Yu. and Popov, V. N. (2014), “Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings”, Biokhimiya [Biochemistry], vol. 79, pp. 645–660.

10. Smith, C., Barther, M., Melino, V., Smith, P., Day, D. and Soole, K. (2001), “Alterations in the mitochondrial alternative NAD(P)H dehydrogenase NDB4 lead to changes in mitochondrial electron transport chain composition, plant growth and response to oxidative stress”, Plant and Cell Physiology, vol. 52, pp. 1222–1237.

11. Li, X., Wu, Y., Li, J., Li, Y., Long, L., Li, F. and Wu, G. (2015), “Development and validation of a 48-target analytical method for high-throughput monitoring of genetically modified organisms”, Scientific reports, vol. 5, pp. 1–11.

12. Reiting, R., Broll, H., Waiblinger, H.-U. and Grohmann, L. (2007), “Collaborative Study of a T-nos Real-Time PCR Method for Screening of Genetically Modified Organisms in Food Products”, Journal für Verbraucherschutz und Lebensmittelsicherheit, vol. 2, pp. 116–121.

13. Taberlet, P., Girelly, L., Pautou, G. and Bouvet, J. (1991), “Universal primers for amplification of three non-coding regions of chloroplast DNA”, Plant Molecular Biology, vol. 17, pp. 1105–1109.

14. Sambrook, J. (2001), Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press, New York, US.

15. Ausubel, F. M., Brent, R., Kingston R. E., Moore, D. D., Seidman, J. G. and Struhl, K. (2004), Current protocols in molecular biology, Greene Publishing Associates and Wiley-Interscience John Wiley and Sons, New York, US.

16. Chen, P. Y., Wang, C. K., Soong, S. C. and To, K. Y. (2003), “Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants”, Molecular Breeding, vol. 11, no. 4, pp. 287–293.

17. Kartel, N. A. Geneticheskie osnovy selektsii rastenii. Tom 4. Biotekhnologiya v selektsii rastenii. Genomika i gene-ticheskaya inzheneriya [Genetic basis of plant breeding: Biotechnology in plant breeding. Vol. 4. Genomics and genetic engineering], Belaruskaya navuka, Minsk, BY.

18. Sauchyn, D. V., Panush, A. S. and Kartel, N. A. (2012), “Transgenic potato and tobacco plants with gox gene of Peni- cillium funiculosum development and analysis”, Vesti Natsyyanalnai Akademii Navuk Belarusi, Ser. Biyal. Navuk [Proceedings of the National Academy of Sciences of Belarus, biological series], no. 4, pp. 16–19.

19. Sauchyn, D. V., Panush, A. S. and Kartel, N. A. (2011), “Genetic transformation of plants using vector constructions with Penicillium funiculosum GOX gene”, Molekulyarnaya i prikladnaya genetika: sbornik nauchnykh trudov [Molecular and Applied Genetics: collection of scientific works], Pravo i ekonomika, Minsk, BY, vol. 12, pp. 49–55.

20. NCBI (2016), Arabidopsis thaliana gene NDB2, Available at: https://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/ av.cgi?db=ara&q=NDB2 (Accessed 25.010.2015).

21. Perlak, F. J., Fuchs, R. L., Dean, D. A., McPherson, S. L. and Fischhoff, D. A. (1991), “Modification of the coding sequence enhances plant expression of insect control protein genes”, Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 8, pp. 3324–3328.

22. Graciet, E., Mesiti, F. and Wellmer, F. (2010), “Structure and evolutionary conservation of N-end rule pathway”, The Plant Journal, vol. 61, pp. 741–751.

23. Kozak, M. (1986), “Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes”, Cell, vol. 44, pp. 283–292.

24. Marenkova, T. V., Loginova, D. B. and Deineko, E. V. (2012), “Mosaic patterns of transgene expression in plants”, Genetika [Genetics], vol. 48, no. 3, pp. 293–306.

25. Matzke, M. A., Mette, M. F. and Matzke, A. J. (2000), “Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates”, Plant Molecular Biology, vol. 43, no. 2/3, pp. 401–415.

26. Deineko, E. V. (2004) “Study of the expression of heterologous genes and their own transgenic plants: for example, Nicotiana tabacum L.”, Ph. D. Thesis, Kinetics and Catalysis, Institut tsitologii i genetiki Sibirskogo otdeleniya Rossiikoi akademii nauk, Novosibirsk, RU.


Review

Views: 770


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)