Preview

Proceedings of the National Academy of Sciences of Belarus, Biological Series

Advanced search

SYNTHESIS OF FLUDARABINE 5′-MONOPHOSPHATE USING BACTERIAL RECOMBINANT ENZYMES

Abstract

The scheme of enzymatic preparation of fludarabine-5′-monophosphate from 2-fluoroadenine and cyclocytidine as a donor of arabinose fragment was developed and experimentally proved. Acetylphosphate was used as a donor of phosphate group. Cytidine deaminase, uridine phosphorylase, purine nucleoside phosphorylase and deoxynucleoside kinase recovered from earlier designed strains of Escherichia coli were used as biocatalysts. The synthesized fludarabine-5′-monophosphate is planned for using as a pro-drug in enzymatic pro-medicinal approach to therapy of cancer.

About the Authors

A. I. Beresnev
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus
Ph. D. (Biol.), Senior scientific researcher. Institute of Microbiology


A. N. Rymko
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus
Ph. D. (Biol.), Senior scientific researcher. Institute of Microbiology


L. A. Eroshevskaya
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus
Ph. D. (Biol.), Lead scientific researcher. Institute of Microbiology


S. V. Kvach
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus
Ph. D. (Biol.), Lead scientific researcher. Institute of Microbiology


E. I. Kvasyuk
International State Ecological Institute named after A. D. Sakharov of the Belarusian State University
Belarus
D. Sc. (Chem.), Professor


A. I. Zinchenko
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus
Corresponding Member, D. Sc. (Biol.), Professor, Head of the laboratory


References

1. Connor, J., Bucana, C., Fidler, I. J. and Schroit, A. J. (1989), “Differentiation-dependent expression of phosphatidylserine in mammalian plasma membranes: quantitative assessment of outer-leaflet lipid by prothrombinase complex formation”, Proceedings of the National Academy of Sciences, vol. 86, pp. 3184–3188.

2. Utsugi, T., Schroit, A. J., Connor, J., Bucana, C. D. and Fidler, I. J. (1991), “Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human bloodmonocytes”, Cancer Research, vol. 51, pp. 3062–3066.

3. Ran, S., Downes, A. and Thorpe, P. E. (2002) “Increased exposure of anionic phospholipids on the surface of tumor blood vessels”, Cancer Research, vol. 62, pp. 6132–6140.

4. Riedl, S., Rinner, B., Asslaber, M., Schaider, H., Walzer, S., Novak, A., Lohner, K. and Zweytick, D. (2011), “In search of a novel target – Phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy”, Biochimica et Biophysica Acta, vol. 1808, pp. 2638–2645.

5. Schick, P. K., Kurica, K. B. and Chacko, G. K. (1976), “Location of phosphatidylethanolamine and phosphatidylserine in the human platelet plasma membrane”, Journal of Clinical Investigation, vol. 57, pp. 1221–1226.

6. Andree, H. A., Reutelingsperger, C. P., Hauptmann, R., Hemker, H. C., Hermens, W. T. and Willems, G. M. (1990), “Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers”, Journal of Biological Chemistry, vol. 265, pp. 4923–4928.

7. Riedl, S., Rinner, B., Asslaber, M., Schaider, H., Walzer, S., Novak, A., Lohner, K. and Zweytick, D. (2011), “In search of new targets – the membrane lipid phosphatidylserine – the underestimated Achilles’ Heel of cancer cells”, Annals of Onco- logy, vol. 22, suppl. 3, p. 43.

8. Boogaerts, M. A. (2004) “Oral fludarabine therapy in chronic lymphocytic leukemia-increased convenience”, Hematology journal, vol. 5, suppl. 1, pp. 31–37.

9. Ding, X., Herzlich, A. A., Bishop, R., Tuo, J. and Chan, C. C. (2008), “Ocular toxicity of fludarabine: a purine analog”, Expert Review of Ophthalmology, vol. 3, pp. 97–109.

10. Portsmouth, D., Hlavaty, J. and Renner, M. (1997), “Suicide genes for cancer therapy”, Human Gene Therapy, vol. 8, pp. 1637–1644.

11. Parker, W. B., King, S. A., Allan, P. W., Bennett, L. L. Jr., Secrist, J. A., Montgomery, J. A., Gilbert, K. S., Waud,

12. W. R., Wells, A. H., Gillespie, G. Y. and Sorscher, E. J. (1997), “In vivo gene therapy of cancer with E. coli purine nucleoside phosphorylase”, Human Gene Therapy, vol. 8, pp. 1637–1644.

13. Karjoo, Z., Chen, X. and Hatefi, A. (2016), “Progress and problems with the use of suicide genes for targeted cancer therapy”, Advanced Drug Delivery Reviews, vol. 99 (pt A), pp. 113–128.

14. Krais, J. J., De Crescenzo, O. and Harrison, R. G. (2013), “Purine nucleoside phosphorylase targeted by Annexin V to breast cancer vasculature for enzyme prodrug therapy”, PLoS ONE, vol. 8, e76403.

15. Van den Neste, E., Cardoen, S., Offner, F., Bontemps, F. (2005), “Old and new insights into the mechanisms of action of two nucleoside analogs active in lymphoid malignancies: fludarabine and cladribine (review)”, International Journal of Oncology, vol. 27, pp. 1113–1124.

16. Lee, J., Filosa, S., Bonvin, J., Guyon, S., Aponte, R. A. and Turnbull, J. L. (2001), “Expression, purification, and char-acterization of recombinant purine nucleoside phosphorylase from Escherichia coli”, Protein Expression and Purification, vol. 22, pp. 180–188.

17. Montgomery, J. A. and Hewson, K. (1969), “Nucleosides of 2-fluoroadenine”, Journal of Medicinal Chemistry, vol. 12, pp. 498–504.

18. Beresnev, A. I. (2015) “Biotechnological synthesis of modified nucleosides using recombinant enzymes of nucleic acid metabolism of Thermus thermophilus and Escherichia coli”, Abstract of Ph. D. dissertation, Biotechnology, Institute of Microbiology of the National Academy of Sciences of Belarus, Minsk, BY.

19. Kvach S. V., Eroshevskaya, L. A., Zinchenko, A. I., Shakhbazov, A. V. and Kartel’, N. A., Institut mikrobiologii Natsional’noi akademii nauk Belarusi, Institut genetiki i tsitologii Natsional’noi akademii nauk Belarusi (2012), Shtamm bakterii Escherichia coli, produtsiruyushchii uridinfosforilazu [Bacterial strain of Escherichia coli producing uridine phospho- rylase], BY, Pat. 15563.

20. Kvach, S. V., Eroshevskaya, L. A., Zinchenko, A. I., Shakhbazov, A. V. and Kartel’, N. A., Institut mikrobiologii Natsional’noi akademii nauk Belarusi, Institut genetiki i tsitologii Natsional’noi akademii nauk Belarusi (2010), Shtamm bakterii Escherichia coli – produtsent purinnukleozidfosforilazy [Bacterial strain of Escherichia coli producing purine nucleo-side phosphorylase], BY, Pat. 13127.

21. Rymko, A. N. (2014), “Development of biotechnological approach for producing of 2′-deoxynucleoside-5′-triphosphates”, Abstract of Ph. D. dissertation, Biotechnology, Institute of Microbiology of the National Academy of Sciences of Belarus, Minsk, BY.

22. Rymko A. N., Kvach, S. N. and Zinchenko, A. I., Institut mikrobiologii Natsional’noi akademii nauk Belarusi (2015), Shtamm bacterii Escherichia coli, produtsiruyushchii dezoksinukleozidkinazu Drosophila melanogaster [Bacterial strain of Escherichia coli producing deoxy nucleoside kinase], BY, Pat. 19750.

23. Dolbier, W. R. (2005), “Fluorine chemistry at the millennium”, Journal of Fluorine Chemistry, vol. 126, pp. 157–163.

24. Farina, P., Petrucciani, L., Colombo, P., Caprioli, G., Pro. Bio. Sint. S.p.A. (2004), A process for the preparation of fludarabine phosphate from 2-fluoroadenine, IT, Pat. EP1464708.


Review

Views: 757


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1029-8940 (Print)
ISSN 2524-230X (Online)