Construction of Escherichia coli strain, producing di-adenylate cyclase and its application for cyclic di-AMP synthesis
Abstract
About the Authors
I. S. KazlovskijBelarus
D. S. Radevich
Belarus
A. N. Rymko
Belarus
A. S. Shchokolova
Belarus
S. V. Kvach
Belarus
A. I. Zinchenko
Belarus
References
1. Romling, U. Great times for small molecules: c-di-AMP, a second messenger candidate in bacteria and archaea / U. Romling // Sci. Signal. - 2008. - Vol. 1.: e39.
2. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates / G. Witte [et al.] // Mol. Cell. - 2008. - Vol. 30. - P. 167-178.
3. Woodward, J. J. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response / J. J. Woodward, A. T. Iavarone, D. A. Portnoy // Science. - 2010. - Vol. 328. - P. 1703-1705.
4. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress / R. M. Corrigan [et al.] // PLoS Pathol. - 2011. - Vol. 7.: e1002217.
5. Identification of a Streptococcus pyogenes SF370 gene involved in production of c-di-AMP / T. Kamegaya [et al.] // Med. Sci. - 2011. - Vol. 73. - P. 49-57.
6. Bis-(3',5')-cyclic dimeric adenosine monophosphate: Strong Th1/Th2/Th17 promoting mucosal adjuvant / T. Ebensen [et al.] // Vaccine. - 2011. - Vol. 29. - P. 5210-5220.
7. The W-ethyl-W-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides / J. D. Sauer [et al.] // Infect. Immunol. - 2011. - Vol. 79. -P. 688-694.
8. A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis / B. Dey [et al.] // Nat. Med. - 2015. - Vol. 21. - P. 401-406.
9. Hsu, C.-Y. J. Synthesis and physical characterization of Bis 3',5' cyclic dinucleotides (-NpNp-): RNA polymerase inhibitors / C.-Y. J. Hsu, D. Dennis, R. A. Jones // Nucleosides, Nucleotides. -1985. - Vol. 4, N 3. - P. 377-389.
10. The cyclic diguanylic acid regulatory system of cellulose synthesis in Acetobacter xylinum. Chemical synthesis and biological activity of cyclic nucleotide dimer, trimer, and phosphothioate derivatives / P. Ross [et al.] // J. Biol. Chem. - 1990. -Vol. 265. - P. 18933-18943.
11. Suzuki, N. Practical synthesis of cyclic bis (3'-5') diadenylic acid (c-di-AMP) / N. Suzuki, K. Oyama, M. Tsukamoto // Chem. Lett. - 2011. - Vol. 40. - P. 1113-1114.
12. Mycobacterium tuberculosis Rv3586 (DacA) is a diadenylate cyclase that converts ATP or ADP into c-di-AMP / Y. Bai [et al.] // PLoS ONE. - 2012. - Vol. 7, N 4.: e35206.
13. Cyclic di-AMP homeostasis in Bacillus subtilis both lack and high level accumulation of the nucleotide are detrimental for cell growth / F. M. Mehne [et al.] // J. Biol. Chem. - 2013. - Vol. 288, N 3. - P. 2004-2017.
14. pEX-MBP recombinant plasmid for DisA expression: пат. 104293822 Китай / G. Yang, Z. Guo, J. Wang [et al.]; дата публ. 21.01.2015.
15. Quan, J. Circular polymerase extension cloning of complex gene libraries and pathways / J. Quan, J. Tian // PLoS ONE. - 2009. - Vol. 4, N 7.: e6441.
16. Studier, F. W. Protein production by auto-induction in high-density shaking cultures / F. W. Studier // Protein Expr. Purif. - 2005. - Vol. 41, N 1. - P. 207-234.
17. Highly efficient enzymatic preparation of c-di-AMP using the diadenylate cyclase DisA from Bacillus thuringiensis / C. Zheng [et al.] // Enzyme Microbiol. Technol. - 2013. - Vol. 52, N 6-7. - P. 319-324.