ВЕСЦІ НАЦЫЯНАЛЬНАЙ АКАДЭМІІ НАВУК БЕЛАРУСІ № 4 2014 СЕРЫЯ БІЯЛАГІЧНЫХ НАВУК

УДК 616-092.12: 612.6

Е. А. ПОПЛАВСКАЯ, Р. Е. ЛИС

ВЛИЯНИЕ БАКТЕРИАЛЬНЫХ ЛИПОПОЛИСАХАРИДОВ ГРАМОТРИЦАТЕЛЬНЫХ БАКТЕРИЙ (*E. COLI* И *S. MARCESCENS*) ВВЕДЕННЫХ САМЦАМ КРЫС, НА АКТИВНОСТЬ ФЕРМЕНТОВ В ЦИТОПЛАЗМЕ СПЕРМАТОЦИТОВ ПЕРВОГО ПОРЯДКА

Гродненский государственный медицинский университет, e-mail: len.poplavska@mail.ru
(Поступила в редакцию 10.06.2013)

Введение. Актуальной проблемой для Беларуси является демографическая ситуация. Снижение прироста населения обусловлено как социальными, так и биологическими аспектами. Оказать императивное влияние на социальный аспект данной проблемы не представляется возможным, так как социальные процессы слишком инерционны, поэтому внимание исследователей концентрируется, прежде всего, на биологических аспектах, в качестве которых выступают мужское и женское бесплодие, а также невынашивание беременности [4, 8, 12, 13].

Невынашивание беременности может происходить как в результате преждевременной родовой деятельности, так и в результате гибели зародыша. Среди причин гибели зародыша инфекции рассматриваются как ведущий фактор, возбудителями которых выступают как грамположительные, так и грамотрицательные микроорганизмы [3]. Кроме жизнеспособных микробов, эмбриотоксическое действие оказывают и их эндотоксины, представляющие собой липополисахариды (ЛПС). Известно, что бактериальные липополисахариды при воздействии на организм матери во время беременности вызывают нарушения процессов антенатального развития и, как следствие, приводят к нарушениям процессов постнатального развития потомства [1, 6]. При этом наблюдается прямой контакт эндотоксинов с организмом матери. Все вышеприведенные факты ставят во главу угла в этиологии прерывания беременности или нарушений процессов антенатального развития только взаимоотношение организма матери и зародыша [2]. Однако, согласно нашим исследованиям, бактериальные липополисахариды грамотрицательных микроорганизмов (E. coli и S. marcescens), введенные самцам крыс за 45-55 сут до спаривания, приводят к резкому увеличению доимплантационной гибели их потомства [9, 10]. В данном случае прямое действие липополисахаридов на зародыш исключается, так как единственным связующим звеном между организмом самки и самца является сперматозоид. Исходя из этого, можно предположить, что причиной репродуктивных потерь является нарушение сперматогенеза под воздействием липополисахаридов грамотрицательных микроорганизмов. Сперматогенез - сложный многостадийный процесс роста, созревания и формирования сперматозоидов из незрелых половых клеток. Нормальное протекание сперматогенеза требует скоординированного влияния многочисленных факторов – генетических, клеточных, гормональных и др. Подобная сложность делает сперматогенез «легкой мишенью» для всякого рода негативных воздействий, в том числе и липополисахаридов грамотрицательных микроорганизмов [11]. На наш взгляд, наиболее подвержены воздействиям различных факторов клетки сперматогенного эпителия в профазе первого мейотического деления из-за большой продолжительности фазы и уникальности процессов, происходящих при этом: конъюгации и кроссинговера гомологичных хромосом.

В связи с вышеизложенным представляет несомненный интерес исследование влияния бактериальных ЛПС грамотрицательных микроорганизмов на сперматогенез и, в частности, на клетки сперматогенного эпителия семенных канальцев семенников.

Цель работы — изучить влияние бактериальных липополисахаридов грамотрицательных бактерий ($E.\ coli\ u\ S.\ marcescens$), введенных самцам крыс, на активность ключевых ферментов пентозофосфатного шунта, анаэробного гликолиза, а также НАДН-дегидрогеназы и НАДФН-дегидрогеназы в цитоплазме сперматоцитов первого порядка семенных канальцев на 1,3,6-е сутки после введения.

Объекты и методы исследования. Объектом исследования являлись половозрелые самцы беспородных белых крыс. В качестве агента воздействия использовались бактериальные липополисахариды *Escherichia coli* серотип 0111: В4 и *Serratia marcescens*, производство фирмы Sigma, США.

В эксперименте было использовано 60 самцов беспородных белых крыс. Масса самцов составляла 200–250 г. Все животные содержались в стандартных условиях вивария с соблюдением требований, изложенных в Хельсинской декларации о гуманном обращении с животными.

Из самцов были сформированы шесть подопытных, три контрольные и одна интактная группы. Самцам подопытных групп вводился ЛПС $E.\ coli$ или $S.\ marcescens$ в дозе 50 мкг/кг массы внутрибрюшинно, однократно, самцам контрольных групп — физиологический раствор в эквиобъемном количестве. Самцы интактной группы не подвергались никаким воздействиям. На 1, 3 и 6-й дни после воздействия ЛПС самцов подопытных, контрольных и интактной групп усыпляли парами эфира с последующей декапитацией. Животных вскрывали и выделяли семенники. Сразу после взятия, половину семенника замораживали в жидком азоте. Из замороженного кусочка семенника готовили криостатные срезы толщиной 10 мкм в микротоме-криостате Місгот НМ 525 при температуре — 25 °C. На криостатных срезах проводили гистохимические реакции по выявлению активности лактатдегидрогеназы (ЛДГ) — маркера анаэробного гликолиза; НАДН2-дегидрогеназы (НАДН2ДГ) — показателя активности митохондриальных процессов; глюкозо-6-фосфатдегидрогеназы (Г6ФДГ) — маркера пентозофосфатного шунта и НАДФН2-дегидрогеназы (НАДФН2ДГ) — показателя обеспеченности синтетических процессов [5, 7]. Все гистохимические исследования сопровождались безсубстратными контролями.

Уровень активности ферментов учитывался с помощью компьютерной системы анализа изображений BIOSCAN-NT по коэффициенту пропускания окрашенного среза в единицах оптической плотности. Оценку достоверности изменения численных значений проводили с помощью непараметрической статистики с применением компьютерной программы Statistica 6.0 для Windows. Сравнение групп по одному признаку проводили с помощью критерия Манна-Уитни для независимых выборок (Mann-Whitney U-test). Различия между показателями считали статистически достоверными, если вероятность ошибочной оценки не превышала 5 % (p < 0,05).

Результаты и их обсуждение. Уровень активности исследуемых ферментов изменяется неоднозначно в зависимости от срока введения.

У самцов, получавших ЛПС $E.\ coli$, на 1-е сутки после введения происходит увеличение уровня активности практически всех исследуемых ферментов, за исключением $\Gamma6\Phi$ Д Γ : уровень активности ЛД Γ повышен на 9,33 %; уровень активности НАД H_2 Д Γ — на 9,35 % и уровень НАД Φ Н $_2$ Д Γ — на 49,27 % (табл. 1). При этом достоверно от интактного показателя отличается уровень НАД Φ Н $_2$ Д Γ . У самцов, получавших ЛПС $S.\ marcescens$, на 1-е сутки после введения также происходит увеличение уровня активности практически всех исследуемых ферментов, за исключением НАД H_2 Д Γ : уровень активности $\Gamma6\Phi$ Д Γ повышен на 8,06 %, уровень активности ЛД Γ — на 9,33 % и уровень НАД Φ Н $_2$ Д Γ — на 26,81 % (табл.1). Однако различия с интактными показателями статистически недостоверны. В контрольной группе наблюдается как повышение уровня активности исследуемых ферментов, так и его понижение: уровни активности $\Gamma6\Phi$ Д Γ и НАД Φ Н $_2$ Д Γ повышены соответственно на 6,45 и 16,54 %, а уровни активности ЛД Γ и НАД Φ Н $_2$ Д Γ понижены соответственно на 2,00 и 11,60 % (табл. 1). Различия с интактными показателями статистически недостоверны.

У самцов, получавших ЛПС E.~coli, на 3-е сутки после введения происходит увеличение уровня активности всех исследуемых ферментов: уровень активности $\Gamma6\Phi$ Д Γ повышен на 6,45 %, уровень активности ЛД Γ – на 29,00 %, уровень активности НАД H_2 Д Γ – на 58,63 % и уровень НАД Φ Н $_2$ Д Γ – на 47,48 % (табл. 2). При этом достоверно от интактных показателей отличаются

Таблица 1. Уровень активности (в единицах оптической плотности х 1000) Г6ФДГ, ЛДГ, НАДДГ и НАДФДГ в цитоплазме сперматоцитов первого порядка самцов подопытных, контрольных и интактных групп на 1-е сутки после воздействия

Воздействие	Фермент	Медиана	% к интактным показателям	Верхний квартиль 25 %	Нижний квартиль 75 %
	Г6ФДГ				
E. coli		63,00	101,61	51,00	69,50
S. marcescens		67,00	108,06	55,00	70,00
Контроль		66,00	106,45	60,00	71,00
Интактные		62,00		46,00	71,00
	ЛДГ				
E. coli		164,00	109,33	159,00	166,00
S. marcescens		164,00	109,33	154,00	166,00
Контроль		147,00	98,00	139,00	157,00
Интактные		150,00		142,00	166,00
	НАДН ₂ ДГ				
E. coli		152,00	109,35	140,00	171,00
S. marcescens		138,50	99,60	123,00	186,00
Контроль		162,00	116,54	150,00	168,00
Интактные		139,00		131,00	162,00
	НАДФН ₂ ДГ				
E. coli		206,00*	149,27	201,00	211,00
S. marcescens		175,50	126,81	153,00	189,00
Контроль		122,00	88,40	112,00	127,00
Интактные		138,00		132,00	139,00

^{*} Статистически достоверные различия с интактными при p < 0.05.

Таблица 2. Уровень активности (в единицах оптической плотности х 1000) Г6ФДГ, ЛДГ, НАДДГ и НАДФДГ в цитоплазме сперматоцитов первого порядка самцов подопытных, контрольных и итактных групп на 3-е сутки после воздействия

Воздействие	Фермент	Медиана	% к интактным показателям	Верхний квартиль 25 %	Нижний квартиль 75 %
	Г6ФДГ				
E. coli		66,00	106,45	60,00	70,00
S. marcescens		64,50	104,03	53,00	75,00
Контроль		55,50	89,52	34,0	66,00
Интактные		62,00		46,00	71,00
	ЛДГ				
E. coli		192,00*	128,00	190,00	198,00
S. marcescens		161,00	107,33	123,00	203,00
Контроль		160,00	106,66	131,00	174,00
Интактные		150,00		166,00	150,00
	НАДН ₂ ДГ				
E. coli		220,50*	158,63	217,00	234,00
S. marcescens		205,00**	147,48	193,00	210,00
Контроль		172,50	124,10	141,00	183,00
Интактные		139,00		131,00	162,00
	НАДФН ₂ ДГ				
E. coli		145,50	105,43	138,00	181,00
S. marcescens		116,00	84,05	106,00	130,00
Контроль		154,50	111,95	105,00	212,00
Интактные		138,00		132,00	139,00

^{*} Статистически достоверные различия с интактными показателями при p < 0.05.

^{**} Статистически достоверные различия с контрольными показателями при p < 0.05. То же для табл. 3.

уровни ЛДГ и НАДН $_2$ ДГ. У самцов, получавших ЛПС *S. marcescens*, на 3-е сутки после введения наблюдается увеличение уровня активности у трех ферментов: Γ -6-ФДГ — на 4,03 %; ЛДГ — на 7,33 %; НАДН $_2$ ДГ — на 47,48 % (табл. 2) Уменьшение уровня активности происходит только у НАДФН $_2$ ДГ — на 15,95 % (табл. 2). Статистически достоверно по сравнению с интактными по-казателями повышен уровень активности НАДН $_2$ ДГ. В контрольной группе наблюдается как повышение уровня активности исследуемых ферментов, так и его понижение: уровни активности ЛДГ, НАДН $_2$ ДГ и НАДФН $_2$ ДГ повышены соответственно на 6,66, 24,1 и 11,95 %, а уровень активности Γ 6ФДГ снижен на 10,48 % (табл. 2). Различия с интактными показателями статистически недостоверны, как и на 1-е сутки после воздействия.

Согласно полученным данным, ЛПС грамотрицательных бактерий вызывает у самцов белых крыс повышение уровня активности всех исследуемых ферментов. Однако на каждый срок исследования регистрируется изменение активности одного или нескольких исследуемых ферментов при введении разных липополисахаридов: на 1-е сутки после введения ЛПС $E.\ coli$ статистически достоверно повышен уровень активности НАДФН $_2$ -ДГ; на 3-е сутки после введения ЛПС $E.\ coli$ статистически достоверно повышены уровни активности ЛДГ и НАДН $_2$ ДГ; при введении ЛПС $E.\ marcescens$ на этот же срок статистически достоверно повышен уровень активности НАДН $_2$ ДГ; на 6-е сутки после введения ЛПС $E.\ marcescens$ статистически достоверно повышен

Таблица 3. Уровень активности (в единицах оптической плотности х 1000) Г6ФДГ, ЛДГ, НАДДГ и НАДФДГ в цитоплазме сперматоцитов первого порядка самцов подопытных, контрольных и интактных групп на 6-е сутки после воздействия

Воздействие	Фермент	Медиана	% к интактным показателям	Верхний квартиль 25 %	Нижний квартиль 75%
	Г6ФДГ				
E. coli		64,00	103,23	64,00	70,00
S. marcescens		84,50**	136,29	78,00	96,00
Контроль		68,50	110,48	57,00	76,00
Интактные		62,00		46,00	71,00
	ЛДГ				
E. coli		174,00	116,00	168,00	177,00
S. marcescens		178,00	118,66	154,00	204,00
Контроль		156,50	104,33	150,00	169,00
Интактные		150,00		142,00	166,00
	НАДН ₂ ДГ				
E. coli		123,00	88,48	115,00	200,00
S. marcescens		171,50	123,38	152,00	209,00
Контроль		140,50	101,07	110,00	172,00
Интактные		139,00		131,00	162,00
	НАДФН ₂ ДГ				
E. coli		120,00	86,95	77,00	142,00
S. marcescens		115,00	83,33	114,00	151,00
Контроль		149,50	108,33	145,00	169,00
Интактные		138,00		132,00	139,00

уровень активности Γ 6ФДГ. Изменение уровня активности исследуемых ферментов является следствием изменения окислительного статуса в организме крыс и, в частности в семенниках, в ответ на введение ЛПС грамотрицательных бактерий. Увеличение активности $HAД\Phi H_2Д\Gamma$ свидетельствует об увеличении выработки $HAД\Phi H_2$, который используется для восстановления активности антиоксидантов (глутатиона, аскорбиновой кислоты и витамина E). Увеличение выработки $HAД\Phi H_2$ подтверждается также увеличением уровня активности Γ 6ФД Γ , ключевого фермента пентозофосфатного шунта, которое регистрируется на 6-е сутки после введения липополисахаридов, когда наблюдается некоторое снижение уровня активности $HAД\Phi H_2Д\Gamma$. Увеличение активности $HAД\Phi H_2\Pi$ первого фермента электрон-транспортной цепи — свидетельствует об усилении окисления в дыхательной цепи митохондрий HAД-зависимых субстратов с получением Λ 4 Π 6. Увеличение количества Π 6 Π 6 происходит в результате активации гликолиза, что подтверждается увеличением активности Π 4 Π 6 на этот же срок.

Заключение. Введение ЛПС грамотрицательных бактерий $E.\ coli$ и $S.\ marcescens$ самцам белых крыс приводит к увеличению активности $\Gamma6\Phi$ Д Γ , ЛД Γ , НАД H_2 Д Γ и НАД ΦH_2 Д Γ в цитоплазме сперматоцитов первого порядка в течение первой недели после введения. Изменение активности вышеперечисленных ферментов связано напрямую или косвенно с процессами окислительного стресса, который вызывается введением липополисахаридов. При окислительном стрессе выделяются активные формы кислорода (пероксид водорода, синглетный кислород, супероксид анион радикал, гидроксильный радикал). В частности, гидроксильный радикал (ОН $^{\bullet}$) обладает наибольшей цитотоксичностью среди активных форм кислорода. Главными видами повреждений биомолекул являются: во-первых, отрыв атома водорода (повреждается лецитин – компонент биологических мембран, а также сахара в составе нуклеозидов ДНК); во-вторых, присоединение к молекулам по двойным связям (взаимодействие с пуринами и пиримидинами ДНК и РНК).

Прямое повреждение ДНК при этом характеризуется разрывом цепи, окислением оснований, их модификации, образованием гидропероксидов ДНК, повреждением хромосом. Следствием повреждения ДНК сперматозоидов является появление доминантных леталей у зародышей при оплодотворении яйцеклетки (ооцита второго порядка), которое и приводит к увеличению их предимплантационной гибели.

Литература

- 1. Бандажевский Ю. И. Иммунная регуляция онтогенеза. Гомель, 1994.
- 2. Беломестнов С. Р., Мальгина Г. Б., Токарь В. И. и ∂p . Качество гамет и особенности гормонального статуса мужчин из супружеских пар с неблагоприятным течением беременности // Материалы 4 Российского форума «Мать и Дитя». М., 2004. С. 602-603.
- 3. *Гуртовой Б. Л., Кулаков В. И., Воропаева С. Д.* Применение антибиотиков в акушерстве и гинекологии. 2-е изд., доп. и испр. М., 2004.
- 4. Доброхотова Ю. Э., Савченко Т. Н. Неразвивающаяся беременность: учебно-методическое пособие / Под ред. О. В. Макарова. М., 2002. С. 5–10.
- 5. *Ковальский Г. Б., Журавлева Т. В., Прочуханова Р. А.* Количественная гистохимия дегидрогеназ // Введение в количественную гистохимию ферментов / Под ред. Т. В. Журавлевой, Р. А. Прочухановой. М., 1978.
 - 6. Лис Р. Е., Бандажевский Ю. И. // Изв. АН БССР. Сер. биол. наук. 1986. № 4. С. 76–79.
 - 7. Лойда 3., Госсрау Р., Шиблер Т. Гистохимия ферментов. Лабораторные методы. М., 1982.
- 8. *Макацария А. Д., Киселева-Романова Е. А., Кролл Ж. Б., Бухаева Я. Ш.* // Материалы науч. форума «Новые технологии в акушерстве и гинекологии». М., 1999. С. 239–247.
 - 9. Поплавская Е. А., Лис Р. Е. // Журнал ГрГМУ. 2007. № 1. С. 165–166.
 - 10. Поплавская Е. А., Лис Р. Е. // Новости мед.-биол. наук. 2012. Т. 6, № 4. С. 140–144.
 - 11. Черных В. // Журн. 9 месяцев. 2005. № 9. С. 1-3.
 - 12. Picciano M. F. // Am. J. Clin. Nutr. 2000. Vol. 71, № 4. P. 857–858.
 - 13. Powers R. W., Evans R. W., Majors A. K. et al. // Am. J. Obstet. Gynecol.1998. Vol. 179. P. 1605–1611.

E. A. POPLAWSKAYA, R. E. LIS

THE INFLUENCE OF BACTERIAL LIPOPOLYSACCHARIDES OF GRAM-NEGATIVE BACTERIA (E. COLI AND S. MARCESCENS) OF ESTABLISHED MALE RATS ON ENZYME ACTIVITY IN THE CYTOPLASM OF SPERMATOCYTES OF THE 1ST ORDER Summary

The introduction of lipopolysaccharide of gram-negative bacteria, *E. coli* and *S. marcescens*, male albino rats leads to increased activity of enzymes, G6PDH, LDH, NADH and NADPH, in the cytoplasm of spermatocytes of the first order during the first week after administration.