ВЕСЦІ НАЦЫЯНАЛЬНАЙ АКАДЭМІІ НАВУК БЕЛАРУСІ №2 2014 СЕРЫЯ БІЯЛАГІЧНЫХ НАВУК

УДК 634.737

Н. А. ГРИБОК, А. В. ЗУБАРЕВ, А. А. ВЕЕВНИК

ВЛИЯНИЕ КОНЦЕНТРАЦИИ САХАРОЗЫ НА ИНИЦИАЦИЮ ПАЗУШНЫХ ПОЧЕК И РОСТ АКСИЛЛЯРНЫХ ПОБЕГОВ У СОРТОВ ГОЛУБИКИ ВЫСОКОЙ (VACCINIUM CORYMBOSUM) ПРИ ВВЕДЕНИИ В КУЛЬТУРУ IN VITRO

Центральный ботанический сад НАН Беларуси, Минск, e-mail: office@cbg.org.by

(Поступила в редакцию 10.06.2013)

Введение. Голубика высокая, представитель семейства Брусничные, является ценной ягодной культурой. Плоды голубики – диетический гипоаллергенный продукт. Фенольные соединения, содержащиеся в ягодах голубики, обладают высокой антиоксидантной активностью, противовоспалительными и антидиабетическими свойствами, препятствуют старению клеток [1–7].

В последнее время голубика высокая *Vaccinium corymbosum* L. завоевала большую популярность не только среди садоводов-любителей, но и у агропредприятий и фермерских хозяйств, специализирующихся на производстве плодово-ягодной продукции. В связи с этим возрастает спрос на посадочный материал, удовлетворить который только за счет методов черенкования *in vivo* уже невозможно. Поэтому все более широкое применение находит метод клонального микроразмножения.

Цель наших исследований – изучить влияние концентрации сахарозы в культуральной среде на эффективность инициации пролиферации пазушных почек и рост аксиллярных побегов при введении голубики высокой в культуру *in vitro*.

Объекты и методы исследования. Введение в культуру in vitro coptoв Denise blue, Blue gold, Weymouth голубики высокой проводилось в апреле 2012 г. из однолетних одревесневших черенков. Выгонка побегов из покоящихся почек проводилась в лабораторных условиях при частичном затенении. Полученные побеги срезали и промывали водой с добавлением детергента (Tween-80). После отмывки детергента в условиях ламинар-бокса побеги стерилизовали в течение 20-30 мин 4%-ным раствором препарата «Хлормикс» с добавлением аскорбиновой кислоты в качестве антиокислителя. После стерилизации побеги 5-кратно промывали в стерильной дистиллированной воде. Отмытые побеги нарезали на черенки длиной 1–1,5 см с 2–3 пазушными почками. Пролиферацию аксиллярных побегов инициировали на среде WPM [8] с общим гормональным фоном (5 мг/л 2ір и 1 мг/л ИУК) в вариантах с концентрацией сахарозы 15, 20 и 30 г/л. Возможность использования сред с содержанием сахарозы менее 30 г/л для размножения голубики *in vitro* изучалась рядом исследователей [9–11]. S. C. Debnath [11] установил, что концентрация сахарозы значительно ($P \le 0.05$) влияет на пролиферацию и рост каллуса голубики узколистной V. angustifolium Ait. [11]. По данным S. C. Debnath рост побегов голубики узколистной усиливается при увеличении концентрации сахарозы до 20 г/л, а каллусогенез - при увеличении концентрации сахарозы свыше 20 г/л. Аналогичные результаты по влиянию концентрации сахарозы в безгормональной среде на рост побегов и каллуса получены нами для табака обыкновенного Nicotiana tabacum L. (данные не опубликованы).

Кроме того, индукцию инициации у тестируемых сортов голубики высокой проводили на среде WPM с измененным гормональным фоном (5 мг/л 2ір, без добавления ауксинов) [12] при концентрации сахарозы 30 г/л. Все варианты культивировали в одинаковых условиях: при температуре 28 °C [13], фотопериоде 16 ч, при люминесцентном освещении 1200–1400 лк в стеклянных сосудах под фольгой. На каждый вариант среды было высажено по 3–5 первичных эксплан-

тов в 6 повторностях для всех тестируемых сортов. Расчет средних значений параметров и их отклонений выполнен в программе Exell 2003.

Результаты и их обсуждение. При введении сортов голубики высокой *Vaccinium corymbo- sum* L. в культуру *in vitro* эксплантами из побегов, полученных выгонкой из покоящихся почек, можно столкнуться с рядом сложностей. Одной из них является образование обильного каллуса, на рост которого расходуется значительная часть питательных веществ, и тем самым препятствующего развитию аксиальных почек, что ведет к некротическим изменениям и даже гибели первичного экспланта. В наших исследованиях во всех вариантах сред у всех сортов в местах соприкосновения экспланта со средой образовывался раневой каллус (он достаточно хорошо заметен на просвете агаризованной среды). Кроме того, каллус образовывался на листьях, контактирующих со средой. Фотографии, сделанные через 5 недель после инициации на разных вариантах сред, представлены на рис. 1–3. На средах с разной концентрацией сахарозы выраженность каллусогенеза и эффективноть инициации пролиферации пазушных почек и высота аксиллярных побегов была различной. Выраженность и характер каллусогенеза, выраженность аксиллярного побегообразования, высота полученных побегов и количество новых пазушных почек, заложенных на них, представлены в таблице.

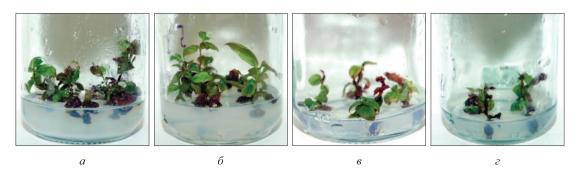


Рис. 1. Сорт Blue Gold через 5 недель после инициации на разных вариантах среды WPM: a — концентрация 2ip 5 мг/л, концентрация ИУК 1 мг/л, концентрация сахарозы 15 г/л; δ — концентрация 2ip 5 мг/л, концентрация 2ip 5 мг/л, концентрация ИУК 1 мг/л, концентрация сахарозы 30 г/л; ε — концентрация 2ip 5 мг/л, концентрация сахарозы 30 г/л (то же для рис. 2, 3)

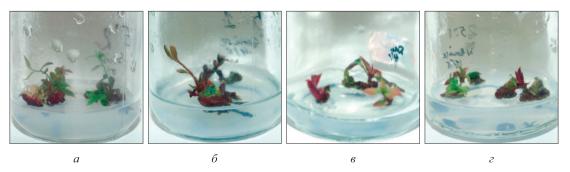


Рис. 2. Сорт Denise через 5 недель после инициации на разных вариантах среды WPM

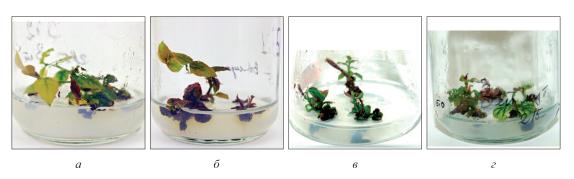


Рис. 3. Сорт Weymouth через 5 недель после инициации на разных вариантах среды WPM

Влияние концентрации сахарозы на инициацию пролиферации у сортов голубики высокой

Показатель	Сорт	Концентрация сахарозы и гормонов в среде			
		Сахароза 15 г/л, 2ip 5 мг/л, ИУК 1 мг/л	Сахароза 20 г/л, 2ip 5 мг/л, ИУК 1 мг/л	Сахароза 30 г/л, 2ip 5 мг/л, ИУК 1 мг/л	Сахароза 30 г/л, 2ip 5 мг/л, ИУК 0 мг/л
Каллусогенез, %	Blue gold	100	100	100	100
Характер каллусогенеза		стеблевой, листовой	стеблевой, листовой	стеблевой*, листовой*	стеблевой*, листовой*
Аксиллярное побегообразование, %		100	100	100	50
Высота побегов, см		3,0 ± 1,0	$3,5 \pm 0,5$	$1,5 \pm 0,5$	$0,5 \pm 0,1$
Количество почек, шт.		5±1	8±2	3 ± 1	2±1
Каллусогенез,%	Denise blue	100	100	100	100
Характер каллусогенеза		стеблевой, листовой	стеблевой, листовой	стеблевой, листовой	стеблевой, листовой
Аксиллярное побегообразование, %		100	100	100	50
Высота побегов, см		2,0±1,0	$2,0\pm0,5$	$1,0\pm 0,5$	$0,4 \pm 0,1$
Количество почек, шт.		7±2	5 ± 1	3 ± 1	2±1
Каллусогенез, %	Weymouth	100	100	100	100
Характер каллусогенеза		стеблевой, листовой	стеблевой, листовой	стеблевой*, листовой	стеблевой*, листовой*
Аксиллярное побегообразование, %		90	70	80	нет
Высота побегов, см		$3,0\pm 0,5$	$3,0 \pm 1,0$	$1,5 \pm 0,5$	нет
Количество почек, шт.		7±1	6±2	5±1	нет

^{*} В том числе без контакта со средой.

При введении в культуру *in vitro* сортов Denise blue, Blue gold, Weymouth голубики высокой в вариантах с концентрацией сахарозы 15 и 20 г/л образования обильного каллуса не наблюдалось. Образование раневого каллуса в местах контакта первичного экспланта со средой, а также листового каллуса за 5 недель культивирования не помешало получить до 10 новых пазушных почек и аксиллярные побеги высотой до 4 см (см. таблицу). Полученные таким образом асептические культуры голубики в последующих 10 субкультивированиях на среде WPM с различной концентрацией гормонов и сахарозы подтвердили стабильность пролиферации аксиллярных побегов при минимальном образовании раневого каллуса и отсутствии каллуса на листьях и междоузлиях.

В вариантах сред с концентрацией сахарозы 30 г/л через 5 недель культивирования у всех сортов получены аксиллярные побеги высотой не более 2 см. Дальнейшие субкультивирования аксиллярных побегов (более 1 см), полученных на этих вариантах среды WPM, проблематичны по причине ослабленности аксиллярных почек и повторном появлении множественных очагов каллусообразования на листьях и междоузлиях, даже без контакта со средой. Побеги высотой менее 1 см не пригодны для дальнейших субкультивирований.

Индукция инициации пролиферации пазушных почек у тестируемых сортов голубики высокой на безауксиновом варианте среды WPM не дала положительных результатов: кроме раневого каллуса образовывались многочисленные очаги каллусогенеза на листьях и междоузлиях, в том числе без контакта с питательной средой, что привело к некрозу почек первичного экспланта или сильному их ослаблению и массовому некрозу эксплантов при последующем культивировании. Возможно, причиной таких результатов является высокий уровень эндогенных ауксинов в первичных эксплантах. При выгонке побегов из покоящихся почек древесных растений в лабораторных условиях практикуется частичное затенение с целью получения побегов с более длинными междоузлиями (побеги с междоузлиями менее 5 мм не пригодны для дальнейшей работы). Затенение стимулирует синтез ауксинов, за счет чего и происходит вытягивание междоузлий [14].

Заключение. При изучении влияния концентрации сахарозы в культуральной среде на эффективность инициации пролиферации пазушных почек и рост аксиллярных побегов при введении сортов Denise blue, Blue gold, Weymouth голубики высокой в культуру in vitro установлено, что снижение концентрации сахарозы в культуральной среде до 15-20 г/л повышает эффективность инициации в связи с уменьшением количества очагов каллусогенеза на первичных эксплантах и потери питательных веществ, расходуемых на рост каллуса (этого эффекта не удалось достичь на среде WPM с концентрацией сахарозы 30 г/л, даже при исключении из ее состава ауксинов). Полученные через 5 недель асептические культуры голубики при дальнейшем культивировании на среде WPM с различной концентрацией гормонов и сахарозы подтвердили стабильность пролиферации аксиальных побегов при минимальном образовании раневого каллуса и отсутствии каллуса на листьях и междоузлиях. Существенным преимуществом предложенного метода является сокращение срока, необходимого для достижения устойчивой пролиферации аксиальных побегов, до 2 мес (от начала выгонки черенков). Таким образом, предложенный прием позволяет существенно сократить срок, за который достигается устойчивая пролиферация аксиллярных побегов, и может успешно применяться для индукции инициации при введении голубики высокой в культуру in vitro.

Литература

- 1. *Chen Jian, Sun Ai Dong, Gao Xue Juan, Tao Xiao Yun //* Journal of Beijing Forestry University. Beijing: Beijing Forestry University, 2011. Vol. 33, N 2. P. 126–129.
 - 2. Gosch C. // Erwerbsobstbau. Berlin: Blackwell Wissenschafts-Verlag GmbH, 2003. Vol. 45, N 4. P. 117-124.
- 3. Hurst R. D., Wells R. W., Hurst S. M. et al. // Molecular Nutrition & Food Research. Weinheim: WILEY-VCH Verlag GMBH & Co. KGaA, 2010. Vol. 54, N 3. P. 353–363.
 - 4. Duffy K.B., Spangler E.L., Devan B.D. et al. // Neurobiology of Aging. 2008. Vol. 29. Issue 11. P. 1680–1689.
- 5. Xie C.H., Kang J., Ferguson M.E. et al. // Molecular Nutrition & Food Research. Weinheim: Wiley-Blackwell, 2011. Vol. 55, N 10. P. 1587–1591.
- 6. Chen Chieh Fu, Li Ya Dong, Xu Zhe // Acta Pharmaceutica Sinica. Beijing: Acta Pharmaceutica Sinica, Institute of Materia Medica, Chinese Academy of Medical Sciences. 2010. Vol. 45, N 4. P. 422–429.
 - 7. Galli R. L., Bielinski D. F., Szprengiel A. et al. // Neurobiology of Aging. 2006. Vol. 27, N 2. P. 344–350.
 - 8. Lloyd G., McCown B. // Comb. Proc. Int. Plant Prop. Soc. 1980. Vol. 30. P. 421–427.
- 9. Deng Gui Xiu, Yu Hong, Song Peng Fei, Jiang Yan Qin // Journal of Plant Resources and Environment. Nanjing: Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences, 2011. Vol. 1, N 20. P. 60–64.
- 10. Zhao X., Zhan L., Zou X. // New Zealand Journal of Crop and Horticultural Science. Oxfordshire: Taylor and Francis, 2011. Vol. 39, N 1. P. 51–59.
- 11. Debnath S. C. // Proceedings of the Ninth North American Blueberry Research. The Haworth Press, Inc. 2004.
 - 12. Валиханова Г.Ж. // Биотехнология растений. Алматы, 1996. С. 94.
- 13. Zhidong Zhang, Haiguang Liu, Lin Wu and Yadong Li // Proceedings of the Eighth International Symposium on Vaccinium Culture, Sevilla, Spain and Oeiras, Portugal, 3–8 May 2004 / Acta Horticulturae (715). Leuven: International Society for Horticultural Science (ISHS), 2006. P. 421–425.
- 14. Якушкина Н. И., Бахтенко Е. Ю. // Физиология растений: Учебник для студентов вузов, обучающихся по специальности 032400 «Биология». М., 2004. С. 344.

N. F. GRIBOK, A. V. ZUBAREV, A. A. VEYEVNIK

THE EFFECT OF SUCROSE CONCENTRATION ON THE INITIATION OF AXILLARY BUDS AND AXILLARY SHOOTS GROWTH AT THE CULTIVARS OF NORTHERN HIGHBUSH BLUEBERRY (VACCINIUM CORYMBOSUM) INTRODUCTION IN VITRO CULTURE

Summary

The effect of sucrose concentration on the initiation of axillary buds and axillary shoots growth at cvs Denise blue, Blue gold, Weymouth of highbush blueberry (*Vaccinium corymbosum* L.) introduction to the culture *in vitro* was investigated. The initiation was provide on WPM medium with 2ip (5 mg/l), IAA (1mg/l), sucrose15, 20, 30 g/l and WPM medium with 2ip (5 mg/l), sucrose 30 g/l, without IAA. The results of investigation have shown the initiation of blueberry axillary buds is more effective on WPM medium with 2ip (5 mg/l), IAA (1mg/l), sucrose15, 20 g/l. The developed method reduces the term to obtain stable proliferation of axillary shoots. It may be used successfully for the introduction of blueberry cvs *in vitro* culture.