ВЕСЦІ НАЦЫЯНАЛЬНАЙ АКАДЭМІІ НАВУК БЕЛАРУСІ № 3 2015 СЕРЫЯ БІЯЛАГІЧНЫХ НАВУК

УДК 577.21:631.524.86:632.4:633.111

А. А. БУЛОЙЧИК, Т. В. ДОЛМАТОВИЧ

МОЛЕКУЛЯРНАЯ ИДЕНТИФИКАЦИЯ ГЕНОВ УСТОЙЧИВОСТИ К БУРОЙ РЖАВЧИНЕ В ОЗИМЫХ СОРТАХ ПШЕНИЦЫ, ВЫРАЩИВАЕМЫХ В БЕЛАРУСИ

Институт генетики и цитологии НАН Беларуси, Минск, e-mail: A. Buloichik@igc.bas-net.by
(Поступила в редакцию 25.03.2015)

Введение. Бурая ржавчина (возбудитель – гриб *Puccinia triticina* Erikss.) – одно из наиболее распространенных и вредоносных заболеваний пшеницы. В отдельные годы при благоприятных для развития возбудителя погодных условиях потери урожая зерна могут достигать 40 % [1]. Поэтому основным направлением в селекции зерновых культур на иммунитет к болезням является создание и культивирование сортов и линий пшеницы, обладающих устойчивостью к бурой ржавчине.

Использование в селекционных программах подходов, основанных на применении молекулярных маркеров, позволяет идентифицировать эффективные гены устойчивости в сортах и гибридах и облегчает направленную передачу фрагментов генома донора, существенно ускоряя селекционный процесс. Применение ДНК-маркеров необходимо и при комбинировании нескольких генов устойчивости в одном сорте (пирамидировании), так как достаточно сложно на основании фенотипических данных идентифицировать растения, имеющие более одного гена устойчивости.

К настоящему времени молекулярные маркеры разработаны для большинства из известных генов устойчивости, однако диагностическая ценность их различна. Наибольший интерес представляют маркеры, позволяющие детектировать непосредственно сами гены, но, к сожалению, большинство из этих генов до сих пор не клонировано.

Цель работы — скрининг озимых сортов пшеницы, районированных на территории Республики Беларусь, на наличие генов устойчивости к бурой ржавчине и выявление среди них источников устойчивости.

Материалы и методы исследования. Материалом для проведения исследований послужили сорта мягкой озимой пшеницы, внесенные в Государственный реестр Республики Беларусь в 2013 г. В работу был взят 51 сорт, из них 25 сортов белорусской селекции: Капылянка, Гармония, Каравай, Былина, Легенда, Щара, Саната, Гродненская 7, Завет, Прэм'ера, Спектр, Веда, Узлет, Фантазія, Зарица, Сюіта, Канвеер, Уздым, Ядвіся, Ода, Элегія, Кредо, Приозерная, Капэла, Сакрэт; 10 — немецкой: Zentos, Cubus, Lars, Akteur, Skagen, Arctis, Bockris, Dromos, Mulan, Lucius; 9 — польской: Tonacja, Sukces, Bogatka, Finezja, Nutka, Muza, Turnia, Markiza, Figura; 3 — французской: Sailor, Dorota, Olivin; 2 — российской: Дар Зернограда и Дон-93; 1 сорт из Греции — Еигоfit и 1 из Чехии — Водетіа.

Экстракцию ДНК осуществляли из 10 индивидуальных проростков для каждого сорта (случайная выборка по 10 зерен для каждого сорта) по методу Plaschke и др. [2]. Концентрацию измеряли на спектрофотометре Ultraspec 3300pro (Amersham, США). Реакцию амплификации с отобранными из литературных данных праймерами к генам устойчивости проводили согласно

протоколам, описанным в методических рекомендациях [3]. Набор использованных в работе маркеров к Lr-генам пшеницы приведен в таблице. Положительным контролем служили изогенные линии пшеницы и сорта, в которых гены устойчивости идентифицированы, в качестве отрицательного контроля — сорта, в которых гены устойчивости не выявлены. Анализ полученных фрагментов амплификации проводили в 2 %-ном агарозном геле в трис-ацетатном буфере. В качестве маркера молекулярного веса использовали GeneRuler 100bp DNA Ladder Plus (Thermo Scientific).

Маркеры, использованные для идентификации генов устойчивости к бурой ржавчине, и сорта, для которых показано наличие сцепленных с ними локусов

Идентифицируемый ген	Локализация на хромосоме	Источник гена	Название маркера (праймера)	Сорта с идентифицированными Lr -генами
Lrl	5DL	Triticum aestivum	RGA567–5	Саната, Akteur, Finezja, Уздым, Ядвіся, Dorota, Muza, Turnia, Элегія, Сакрэт
Lr9	6BL	Aegilops umbellulata	SCS5 ₅₅₀	
Lr10	1AS	Triticum aestivum	F12245/Lr10-6/r2	Finezja, Dorota, Olivin, Arctis, Bogemia, Skagen
Lr19	7DL	Thinopyrum elongatum	SCS ₂₆₅ ; SCS ₂₅₃	
Lr20	7AL	Triticum aestivum	STS648-L/R	
Lr21	5DS	Aegilops tauschii	D14LN-RN	
Lr22a	2DS	Aegilops squarrosa	GWM296	
Lr24	3DL	Thinopyrum elongatum	SCS1302 ₆₁₅ , SCS1326 ₆₀₇	
Lr25	4BS	Secale cereale	Lr25F20/R19	
Lr26	1BL	Secale cereale	Iag95, P6M12-P	Фантазія, Капэла, Markiza
Lr28	4AL	Aegilops speltoides	SCS421570	
Lr29	7DS	Thinopyrum elogatum	29F24/29R24	
Lr34	7DS	Triticum aestivum	L34SPF/L34DINT13R2, L34DINT9F/Lr34MINUS	Фантазія, Дар Зернограда, Дон-93, Akteur
Lr35	2BL	Aegilops speltoides	BCD260F1/35R2	
Lr37	2AS	Aegilops ventricosa	VENTRIUP/ LN2	Sailor, Skagen
Lr42	1DS	Aegilops tauschii	CFD15	
Lr47	7AS	Aegilops speltoides	PS10L/10R	

Разделение и анализ микросателлитных последовательностей, полученных в результате ПЦР при идентификации генов устойчивости Lr22a и Lr42, выполняли на автоматическом лазерном флуоресцентном секвенаторе ALFexpress II (Pharmacia) в 6 %-ном полиакриламидном геле.

Результаты и их обсуждение. Для скрининга сортов, районированных на территории Республики Беларусь, было использовано 19 маркеров к 17 генам устойчивости к бурой ржавчине (см. таблицу). В основном это диагностические маркеры (STS, SCAR или SSR), сцепленные с генами устойчивости или фланкирующие их, за исключением клонированных Lr-генов: Lr1, Lr10, Lr21, Lr34, к которым были взяты функциональные маркеры. В исследованных сортах озимой пшеницы не выявлены локусы, сцепленные с генами устойчивости Lr9, Lr19, Lr20, Lr21, Lr22a, Lr24, Lr25, Lr28, Lr29, Lr35, Lr42 и Lr47.

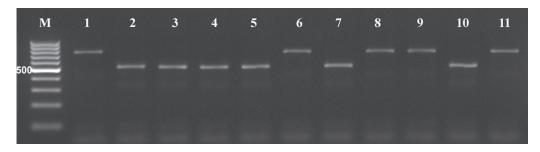
Из 51 изученного сорта озимой пшеницы гены устойчивости к бурой ржавчине идентифицированы у 20 (см. таблицу). Молекулярный скрининг показал, что наиболее часто встречались сорта с генами устойчивости Lr1 и Lr10. Оба гена относятся к собственно пшеничным и локализованы на хромосомах 5DL и 1AS соответственно.

Идентификацию гена устойчивости LrI проводили с помощью ген-специфического маркера RGA567–5. Фрагмент амплификации, характеризующий присутствие гена LrI, выявлен у сортов белорусской селекции Саната, Уздым, Ядвіся, Элегія, Сакрэт и у сортов европейской селекции Akteur, Finezja, Dorota, Muza, Turnia. В качестве контроля при идентификации гена LrI использовалась изогенная линия пшеницы Centenario/6*Tc (RL6003), а также сорта Attila и Tonichi S81.

Ген LrI в сортах пшеницы получил широкое распространение во всем мире, но к настоящему времени утратил свою эффективность в большинстве стран, в том числе в России и Республике Беларусь, поэтому его использование рекомендуется в сочетании с другими Lr-генами.

С помощью функционального маркера F12245/Lr10-6/r2 ген устойчивости Lr10 идентифицирован у сортов озимой пшеницы Finezja, Dorota, Olivin, Arctis, Bogemia, Skagen и у изогенной линии пшеницы Exchange/6*Tc (RL 6004), служащей положительным контролем. В озимых сортах белорусской селекции, внесенных в Государственный реестр Республики Беларусь в 2013 г., ген Lr10 не выявлен. В сортах озимой пшеницы Finezja и Dorota показано сочетание генов устойчивости Lr1 и Lr10.

Ген устойчивости Lr10 получил широкое распространение в российских сортах, а также в сортах из Австралии, Северной Америки и сортах, созданных в Международном селекционном центре СІММҮТ (Мексика). Массовое возделывание сортов с геном устойчивости Lr10 предопределило потерю его эффективности. В настоящее время он неэффективен и к белорусской популяции бурой ржавчины [4]. В то же время в работе Serfing с соавт. [5] показано, что пирамидирование неэффективных генов устойчивости Lr10, Lr13, Lr26 в сортах снижает степень их поражения $Puccinia\ triticina\$ по сравнению с сортами, несущими эти гены по отдельности.


Ген Lr26 в составе транслокации 1BL/1RS, несущей одновременно и гены устойчивости Sr31 (стеблевая ржавчина), Yr9 (желтая ржавчина), Pm8 (мучнистая роса), передан в мягкую пшеницу от сорта ржи Petkus. Для идентификации транслокации 1BL/1RS в сортах использовали фланки-рующие маркеры (с проксимальной области хромосомы SCAR маркер — P6M12-P, с дистальной STS маркер — Iag95), которые позволяют детектировать ген Lr26 в геноме пшеницы [6]. При анализе озимых сортов с помощью указанных маркеров показано присутствие транслокации 1BL/1RS с геном устойчивости Lr26 в сортах Фантазія, Капэла и Markiza.

К настоящему времени транслокация 1BL/1RS идентифицирована во многих сортах, возделываемых в Австралии, странах Европы, Северной и Южной Америки, а также в Азии, и распространена более чем в 650 сортах мягкой пшеницы. Из отечественных сортов пшеницы, несущих пшенично-ржаную транслокацию 1BL/1RS, наиболее известны сорта Кавказ и Аврора, которые использовались в качестве родительских форм при создании сортов с данной транслокацией.

По результатам анализа популяции патогена 2009 г. ген устойчивости к бурой ржавчине Lr26 оказался эффективным к белорусской популяции патогена, в то же время было 11 % вирулентных к нему изолятов, что свидетельствует о возможности их накопления в случае возделывания сортов, содержащих данный ген [4]. В то же время вирулентные к Lr26 клоны гриба Puccinia triticina выявлены во всех регионах Poccuu, где ген Lr26 относится к группе генов устойчивости, утративших свою эффективность в связи с широким возделыванием сортов Poccuu Poccuu

Гены устойчивости Lr34 и Lr37 относятся к генам возрастной устойчивости (adult plant resistance genes), которые проявляют эффективность на более поздних этапах онтогенеза пшеницы. Ген Lr34 локализован на коротком плече хромосомы 7D и тесно сцеплен с генами устойчивости к мучнистой росе (Pm38), желтой ржавчине (Yr18) и геном некроза верхушек листьев – Ltn1. Согласно Krattinger с соавт. [7], Lr34 кодирует белок, связанный с мембранным транспортом (АТФ-зависимый АВС-транспортер), что и определяет наличие у растений обусловленного им типа устойчивости. Устойчивые растения с геном Lr34 характеризуются более длительным латентным периодом развития болезни, меньшим количеством урединиопустул на единицу площади листа по сравнению с восприимчивыми генотипами [8].

Клонирование локуса Lr34/Yr18 позволило получить ряд ген-специфических маркеров на основании различий в нуклеотидных последовательностях интрона 4 и экзонов 11 и 12 между аллелями устойчивости и восприимчивости. В нашей работе для выявления аллельного состояния гена устойчивости Lr34 в сортах озимой пшеницы проводили мультиплексную реакцию с двумя парами базовых праймеров: L34SPF/L34DINT13R2 Lr34(+) и L34DINT9F/L34MINUSR Lr34(-) (маркер cssfr5). Положительным контролем служили сорт Frontana и линия VL404. В результате фрагмент амплификации длиной 751 п. н., характерный для генотипов несущих функциональный аллель гена Lr34 (аллель Lr34(+)), выявлен у озимых сортов Фантазія, Дар Зернограда, Дон 93 и Akteur (см. рисунок).

Результаты разделения методом электрофореза в 2 %-ном агарозном геле продуктов амплификации, полученных с помощью маркера cssfr5 к гену устойчивости Lr34: лунка I – линия VL404 (положительный контроль), 2 – Thatcher (Tc) (отрицательный контроль); сорта: 3 – Капылянка, 4 – Гармония, 5 – Гродненская 7, 6 – Фантазія, 7 – Спектр, 8 – Дар Зернограда, 9 – Дон-93, 10 – Сюіта, 11 – Akteur. М – маркер молекулярного веса (100bp DNA Ladder Plus (Thermo Scientific)

Сорт Фантазія, несущий локус Lr34 в аллельном состоянии Lr34(+), создан в РУП «Научно-практический центр НАН Беларуси по земледелию» путем отбора из гибридной популяции Kronjuwel×Харьковская 39. Сорта Дар Зернограда и Дон 93 — российской селекции, Akteur — немецкой. Сорт Akteur одновременно с Lr34 является носителем гена Lr1. В селекционных программах Канады и СІММҮТ для стабильной защиты сортов от бурой ржавчины ген Lr34 используется в сочетании другими генами устойчивости, такими как Lr10, Lr13, Lr14b, Lr16, Lr21, Lr30, так как показано, что присутствие гена Lr34 повышает экспрессию других генов.

Ген возрастной резистентности Lr37 передан в мягкую пшеницу с транслокацией 2NS-2AS от $Aegilops\ ventricosa$ в составе кластера генов Yr17/Lr37/Sr38 и локализован на коротком плече хромосомы 2A [9]. Идентификацию гена Lr37 в озимых сортах проводили с праймерами VENTRIUP и LN2. Маркерный фрагмент размером 262 п. н. выявлен у сортов европейского происхождения Sailor (Франция) и Skagen (Германия). У сорта Skagen обнаружен также ген устойчивости Lr10. Широкое использование в Европе селекционной линии VPM1, содержащей ген Lr37, при создании ржавчиноустойчивых сортов, привело к массовому распространению данной транслокации в европейских сортах мягкой пшеницы и, как следствие, к утрате его эффективности. Ген Lr37 среднеэффективен в России [10], но высокоэффективен в Беларуси (по нашим данным 2013 г.). Он может быть использован в селекции на устойчивость.

Заключение. Анализ с помощью молекулярных маркеров озимых сортов мягкой пшеницы, внесенных в Государственный реестр Республики Беларусь, показал наличие гена *Lr1* у сортов Саната, Уздым, Ядвіся, Элегія, Сакрэт, Akteur, Finezja, Dorota, Muza, Turnia. Ген устойчивости к бурой ржавчине *Lr10* выявлен в геноме озимых сортов Finezja и Dorota. У сортов Фантазія, Дар Зернограда, Дон 93 и Akteur выявлен функциональный аллель гена *Lr34*(+). Ген *Lr37* выявлен у сортов Sailor и Skagen. В исследованных сортах не выявлены локусы, сцепленные с генами устойчивости *Lr9*, *Lr19*, *Lr20*, *Lr21*, *Lr22a*, *Lr24*, *Lr25*, *Lr28*, *Lr29*, *Lr35*, *Lr42* и *Lr47*.

Таким образом, показана возможность использования исследованных маркеров к генам устойчивости мягкой пшеницы к бурой ржавчине для маркер-сопутствующей селекции (MAS) на этот признак. Установлено, что в сортах мягкой озимой пшеницы, рекомендованных для выращивания на территории Республики Беларусь, ограничено задействован потенциал мирового генофонда и, как следствие, отсутствуют гены, широко и успешно используемые селекционерами других регионов. Выделенные сорта могут служить источниками генов резистентности к возбудителям бурой ржавчины.

Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (договор Б14-018).

Литература

- 1. Маркелова Т. С., Нарышкина Е. А., Баукенова Э. А. и др. // Вестн. защиты растений. 2014. № 1. С. 64–67.
- 2. Plaschke J., Börner A., Xie D. X. et al. // Theor. Appl. Genet. 1993. Vol. 85, N 8. P. 1049–1054.
- 3. Долматович Т. В., Булойчик А. А. ДНК-технология идентификации генов устойчивости пшеницы к возбудителю бурой ржавчины: метод. рекомендации. Минск: Ин-т генетики и цитологии НАН Беларуси, 2013. 64 с.

- 4. Булойчик А. А., Борзяк В. С., Волуевич Е. А. // Микология и фитопатология. 2011. Т. 45, № 5. С. 436–442.
- 5. Serfling A., Kramer I., Lind V. et al. // Eur. J. Plant Pathol. 2011. Vol. 130. P. 559–575.
- 6. Mago R., Miah H., Lawrence G. J. et al. // Theor. Appl. Genet. 2005. Vol. 112. P. 41–50.
- 7. Krattinger S. G., Lagudah E. S., Spielmeyer W. et al. // Science. 2009. Vol. 323, N 5919. P. 1360–1363.
- 8. Kolmer J. A. // Ann. Rev. Phytopathol. 1996. Vol. 34. P. 435–455.
- 9. *McIntosh R. A., Yamazaki Y., Dubcovsky J.* et al. Catalogue of gene symbols for wheat. 2014. Mode of access: http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp. Date of access: 25.02.2015.
 - 10. Коваленко Е. Д., Жемчужина А. И., Киселева М. И. и др. // Защита и карантин растений. 2012. № 9. С. 19–22.

A. A. BULOICHIK, T. V. DOLMATOVICH

MOLECULAR IDENTIFICATION OF RESISTANCE GENES TO LEAF RUST OF WINTER WHEAT VARIETIES RELEASED IN THE ARES OF THE REPUBLIC OF BELARUS

Summary

Molecular marker analysis of winter wheat varieties, entered in the State register of the Republic of Belarus, with the help of has shown the presence of the gene *Lr1* in cultivars Sanata, Usdym, Jadvisja, Elegia, Sakret, Akteur, Finezja, Dorota, Muza, Turnia. The leaf rust resistance gene *Lr10* was identified in the genome of winter varieties Finezja and Dorota. The functional allele *Lr34*+ was revealed in cultivars Fantazija, Dar Zelenograda, Don 93 and Akteur. The gene *Lr37* was identified in varieties Sailor and Skagen. Not loci linked to the resistance genes *Lr9*, *Lr19*, *Lr20*, *Lr21*, *Lr22a*, *Lr24*, *Lr25*, *Lr28*, *Lr29*, *Lr35*, *Lr42* and *Lr47* were identified in the investigated varieties.