Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

АНАЛИЗ ОТДЕЛЬНЫХ ВИДОВ CLADOCERA И COPEPODA МЕЗОТРОФНОГО ОЗЕРА С ИСПОЛЬЗОВАНИЕМ PHENOM PROX-SEM/EDS

Полный текст:


Аннотация

Цель данного исследования – определение содержания основных биохимических элементов в отдельных видах зоопланктона из разных биотопов мезотрофного озера и оценка стехиометрического состава зоопланктона. Стехиометрический анализ Cladocera и Copepoda из четырех различных мест обитания в литоральной и пелагической зонах озера Обстерно (Беларусь) проведен в сентябре 2016 г. с использованием метода, основанного на рентгеновском микроанализе, Phenom Prox Scanning Electron Microscope (SEM) с элементной системой обнаружения (EDS). С помощью Phenom Prox SEM/EDS определен атомный массовый процент углерода, азота и фосфора в поверхностной области тканей карапакса зоопланктона и рассчитаны соотношения C:N, C:P, N:P для Cladocera из зарослей камыша и кубышки и для Copepoda из пелагиали, чистой литорали, камыша и кубышки. Для Cladocera содержание углерода в тканях было значительно выше в пелагиали (p < 0,01), а содержание азота и фосфора, напротив, было ниже в пелагиали (p < 0,01) по сравнению с другими средами обитания. В случае с Copepoda содержание углерода и азота в их тканях не различалось в зависимости от среды обитания. Значительные различия концентраций в зависимости от места обитания обнаружены для фосфора – его содержание было значительно выше у Copepoda из пелагиали по сравнению с копеподами из кубышки (p < 0,01). 


Об авторах

Шабнам Г. Фарахани
Научно-практический центр по биоресурсам НАН Беларуси
Беларусь
аспирант


А. Войталь-Франкевич
Лодзинский университет
Польша
профессор, директор


П. Франкевич
Лодзинский университет
Польша
профессор


Ж. Бусева
Научно-практический центр по биоресурсам НАН Беларуси
Беларусь
канд. биол. наук, ст. науч. сотрудник


Список литературы

1. Redfield A. C. On the proportions of organic derivatives in sea water and their relation to the composition of plankton. James Johnstone Memorial Volume, Universitety Press of Liverpool, Liverpool, 1934, pp. 170–192.

2. Redfield A. C. The biological control of chemical factors in the environment. American Scientist, 1958, vol. 46, no. 3, pp. 205–221.

3. Elser J. J., O’brien W. J., Dobberfuhl D. R., Dowling T. E. The evolution of ecosystem processes: growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats. Journal of Evolutionary Biology, 2000b, no. 13, pp. 845–853. doi: 10.1046/j.1420-9101.2000.00215.x.

4. Evans M. S., Eadie B. J., Glover R. M. Sediment trap studies in southeastern Lake Michigan: Fecal pellet express or the more traveled route? Journal of Great Lakes Research, 1998, vol. 24, iss. 3, pp. 555–568.

5. Quigg A. The evolutionary inheritance of elemental stoichiometry in marine plankton. Nature, 2003, vol. 425, pp. 291–294. doi: http://dx.doi.org/10.1038/nature01953 PMid:13679916.

6. Lenton T. M., Klausmeier K. Biotic stoichiometry controls on the deep ocean N:P ratio. Biogeosciences, 2007, no. 4, pp. 353–367.

7. Flynn K. J. Ecological modeling in a sea of variable stoichiometry: Dysfunctionality and the legacy of Redfield and Monod. Journal of Progress in Oceanography, 2010, vol. 84, iss. 1/2, pp. 52–65. doi: https://doi.org/10.1016/j.pocean.2009.09.006.

8. Quigg A., Irwin A. J., Finkel Z. V. Evolutionary imprint of endosymbiosis of elemental stoichiometry: testing inheritance hypotheses. Proceedings of the Royal Society Biological Sciences, 2010, vol. 278, pp. 526–534. doi:10.1098/rspb.2010.1356.

9. Hart D. R., Stone L., Berman T. Seasonal dynamics of the Lake Kinneret food web: the importance of the microbial loop. Limnology and Oceanography, 2000, vol. 45, iss. 2, pp. 350–361. doi: 10.4319/lo.2000.45.2.0350.

10. Gilbert P. M. Interactions of top-down and bottom-up control in planktonic nitrogen cycling. Hydrobiologia, 1998, vol. 363, iss. 1/3, pp. 1–12. doi: 10.1023/A:1003125805822.

11. Vanni M. J. Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics Journal, 2002, vol. 33, pp. 341–370. doi: https://doi.org/10.1146/annurev.ecolsys.33.010802.150519.

12. Wen Y. H., Peters R. H. Empirical models of phosphorus and nitrogen excretion rates by zooplankton. Limno-logy and Oceanography, 1994, vol. 39, iss. 7, pp. 1669–1679. doi: 10.4319/lo.1994.39.7.1669.

13. Hudson J. J., Taylor W. D. Measuring regeneration of dissolved phosphorus in planktonic communities. Limno-logy and Oceanography, 1996, vol. 41, iss. 7, pp. 560–1565. doi: 10.4319/lo.1996.41.7.1560.

14. Hudson J. J., Taylor W. D., Schindler D. W. Planktonic nutrient regeneration and cycling efficiency in temperate lakes. Nature, 1999, vol. 400, pp. 659–661. doi: 10.1038/23240.

15. Urabe J., Nakanishi M., Kawabata K. Contribution of metazoan plankton to the cycling of nitrogen and phosphorus in Lake Biwa. Journal of Limnology and Oceanography, 1995, vol. 40, iss. 2, pp. 232–242. doi: 10.4319/lo.1995.40.2.0232.

16. Sigee D. C., Krivtsov V., Bellinger E. Elemental concentrations, correlations and ratios in micropopulations of Ceratium hirundinella (Pyrrophyta): and X-ray microanalytical study. European Journal of Phycology, 1998, no. 33, pp. 155–164.

17. Krivtsov V., Bellinger E. G., Sigee D. C. Changes in the elemental composition of Asterionella Formosa during the diatom spring bloom. Journal of Plankton Research, 2000, vol. 22, no. 1, pp. 169–184. doi: https://doi.org/10.1093/ plankt/22.1.169.

18. Heldal M., Scanlan D. J., Norland S., Thingstad F., Mann N. H. Elemental composition of single cells of various strains of marine Prochlorococcus and Synechococcus using X-ray microanalysis. Limnology and Oceanography, 2003, vol. 48, no. 5, pp. 1732–1743.

19. Heldal M., Norland S., Tumyr O. X-ray microanalytic method for measurement of dry matter and elemental concentration of individual bacteria. Applied and Environmental Microbiology, 1985, vol. 50, no. 5, pp. 1251–1257.

20. Booth K. N., Sigee D. C., Bellinger E. Studies on the occurrence and elemental composition of bacteria in freshwater plankton. Journal of Scanning Microscopy, 1987, vol. 1, no. 4, pp. 2033–2042.

21. Norland S., Fagerbakke K. M., Heldal M. Light element analysis of individual bacteria by X-ray microanalysis. Applied and Environmental Microbiology, 1995, vol. 61, no. 4, pp. 1357–1362.

22. Vrede K., Heldal M., Norland S., Bratbak G. Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient-limited bacterioplankton. Applied and Environmental Microbiology, 2002, vol. 68, no. 6, pp. 2965–2971.

23. Cole J. J., Carpenter S. R., Kitchell J., Pace M. L., Solomon C. T., Weidel B. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proceedings of the National Academy of Sciences USA, 2011, vol. 108, no. 5, pp. 1975–1980.

24. Urabe J. N and P cycling coupled by grazers’ activities: food quality and nutrient release by zooplankton. Ecology, 1993, vol. 74, pp. 2337–2350.

25. Speas D. W., Duffy W. G. Uptake of dissolved organic carbon (DOC) by Daphnia pulex. Journal of Freshwater Ecology, 1998, no. 13, pp. 457–463.

26. Tamelander T., Aubert A. B., Wexels Riser C. Export stoichiometry and contribution of Copepod faecal pellets to vertical flux of particulate organic carbon, nitrogen and phosphorus. Marine Ecology Progress Series, 2012, vol. 459, pp. 17–28.

27. Elser J. J., Chrzanowski T. H., Sterner R. W., Mills K. H. Stoichiometric constraints on food-web dynamics: a whole-lake experiment on the Canadian Shield. Ecosystems, 1998, no. 1, pp. 120–136.

28. Darchambeau F., Færøvig P. J., Hessen D. O. How Daphnia copes with excess carbon in its food. Oecologia, 2003, vol. 136, pp. 336–346. doi:10.1007/s00442-003-1283-7.

29. Andersen T., Hessen D. O. Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnology and Oceanography, 1991, no. 36, pp. 807–814.

30. Hessen D. O., Lyche A. Inter- and intraspecific variations in zooplankton element composition. Archiv für Hydrobiologie, 1991, vol. 121, pp. 343–353.

31. Elser J. J., Dobberfuhl D. R., MacKay N. A., Schampel J. H. Organism size, life history, and N:P stoichiometry: to-wards a unified view of cellular and ecosystem processes. Bioscience, 1996, vol. 46, pp. 674–684.

32. Dobberfuhl D. R. Elemental stoichiometry in crustacean zooplankton: phylogenetic patterns, physiological mechanisms, and ecological consequences. Ph. D. dissertation, Department of Biology, Arizona State University, Tempe, Arizona, 1999.

33. Elser J. J., Fagan W. F., Denno R. F., Dobberfuhl D. R., Folarin A., Huberty A., Interlandi S., Kilham S. S., MeCauley E., Schulz K. L.,Siemann E. H., Sterner R. W. Nutritional constraints in terrestrial and freshwater food webs. Nature, 2000, vol. 408, pp. 578–580.

34. Gismervik J. Stoichiometry of some marine planktonic crustaceans. Journal of Plankton Research, 1997, vol. 19, no. 2, pp. 279–285.

35. Sargent J. R., Henderson R. J. Lipids. The Biological Chemistry of Marine Copepods, Corner E. D. S., O’Hara S. C. M., eds. Oxford, 1986, pp. 59–108.

36. Tande K. S. Ecological investigations on the zooplankton community of Balsfjorden, Northern Norway: Generation cycles, and variation in body weight and body content of carbon and nitrogen related to overwintering and reproduction in the Copepod Calanus finmarchicus (Gunnerus). Journal of Experimental Marine Biology, 1982, vol. 62, pp. 129–142.

37. Gronvik S., Hopkins C. C. E. Ecological investigation of the zooplankton community of Balsfjorden northern Norway: Generation cycle, seasonal vertical distribution, and seasonal variations in body weight and carbon and nitrogen content of the copepod Metridia longa (Lubbock). Journal of Experimental Marine Biology and Ecology, 1984, vol. 80, pp. 93–107.

38. Goldman J., McCarthy J. J., Peavey D. G. Growth rate influence on the chemical composition in phytoplankton in oceanic waters. Nature, 1979, vol. 279, pp. 210–214.

39. Kiorboe T. Phytoplankton growth rate and nitrogen content: implications for feeding and fecundity in a herbivorous copepod. Marine Ecology Progress Series, 1989, vol. 55, pp. 229–234.

40. Cowles T. J., Olson R. J., Chisholm S. W. Food selection by Copepods: discrimination on the basis of food quality. Marine Biology, 1988, vol. 100, pp. 41–49.

41. Omori M. Weight and chemical composition of some important oceanic zooplankton in the North Pacific Ocean. Marine Biology, 1969, no. 3, pp. 4–10.

42. Malej A., Faganelli J., Pezdi J. Stable isotope and biochemical fractionation in the marine pelagic food chain: the jellyfish Pelagia noctiluca and net zooplankton. Journal of Marine Biology, 1993, vol. 116, pp. 565–570.

43. Hall S. R., Leibold M. A., Lytle D. A., Smith V. H. Stoichiometry and planktonic grazer composition over gradients of light, nutrients, and predation risk. Ecology, 2004, vol. 85, pp. 2291–2301.

44. Frost P. C. Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecology Letters, 2006, vol. 9, no. 7, pp. 774–779.

45. Frost P. C., Elser J. J. Growth responses of littoral mayflies to the phosphorus content of their food. Ecology Letters, 2002, no. 5, pp. 232–240.

46. Steinman A. D. Effects of grazers on freshwater benthic algae. Algal ecology freshwater benthic ecosystems, Stevenson R. J., Bothwell M. L., Lowe R. L. (et al.). San Diego, 1996, pp. 341–373.


Дополнительные файлы

Просмотров: 96

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

ISSN 1029-8940 (Print)